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The laminar-turbulent transition of the Taylor-Gortler (TG) vortex flow in the 
clearance between two concentric spheres with only the inner sphere rotating 
(spherical Couette flow) is investigated by velocity measurement and simultaneous 
spectral and flow-visualization measurements by measuring the intensity of light 
scattered by the aluminium flakes used in flow visualization in the case of a relatively 
small ratio of the clearance to inner-sphere radius (clearance ratio /3 = 0.14). An 
azimuthal velocity component has been measured by a constant-temperature hot- 
wire anemometer a t  two different colatitudes (meridian angles) 0;  0 = 80" and 90" 
(the equator). A critical Reynolds number, some transition Reynolds numbers, flow 
regimes and flow states are obtained by the simultaneous spectral and flow- 
visualization measurements. The flow state is expressed by the number of toroidal 
TG vortex cells N ,  that  of spiral TG vortex pairs S,, the wavenumber of the 
travelling azimuthal waves on the toroidal TG vortices m and the wavenumber of 
shear waves S,. The mean velocity distribution and the characteristic values of the 
fluctuating velocity, such as autocorrelation coefficient, power spectrum and 
turbulence intensity (r.m.s. value), are considered over a great range of Reynolds 
number Re. Three kinds of fundamental frequencies of the velocity fluctuation are 
discovered and their characteristics are clarified by means of the velocity 
measurement and the simultaneous spectral and flow-visualization measurements. 
The three kinds of fundamental frequencies expressed by fs, fw and fH correspond to 
the spiral TG vortices, the travelling azimuthal waves and the shear waves, 
respectively. These fundamental frequencies are independent of both 0 and wall 
distances from the inner sphere, but depend strongly on Re. Although the rotation 
frequency of the travelling azimuthal waves (or wave speed) in the circular Couette 
flow decreases monotonically with increasing Reynolds number until i t  reaches a 
plateau, the values of the rotation frequencies of the spiral TG vortices, the travelling 
azimuthal waves and the shear waves in the spherical Couette flow, fs/S,, fw/m and 
fH/SH, are nearly constant as the Reynolds number is increased, and differ slightly 
from one another. 

1. Introduction 
I n  this paper the laminar-turbulent transition is considered for the Taylor-Gortler 

(TG) vortex flow between two concentric spheres with the inner sphere rotating and 
the outer sphere a t  rest (spherical Couette system). This kind of transition, which is 
called transition by spectral evolution, is similar to the transition in the Taylor 
vortex flow between two concentric cylinders with only the inner cylinder rotating 
(circular Couette system), as well as Rayleigh-BBnard convection, where the velocity 
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fluctuation power spectrum changes gradually as a cascade process from a line 
spectrum to a continuous one by broadening of the initially sharp spectral lines. 

Recently, many studies on this kind of transition have been reported except for the 
case of the spherical Couette system. Although the flow in the spherical Couette 
system has been investigated by Xawatzki & Zierep (1970), Munson & Menguturk 
(1976), Wimmer (1976), Waked & Munson (1978), Nakabayashi (1978), Krause 
(1980), Belyaev et al. (1979, 1984), Yavorskaya et al. (1980), Bartels (1982), 
Nakabayashi (1983), Tuckerman (1983), Buhler & Zierep (1983, 1984), Dennis & 
Quartapelle (1984), Schrauf & Krause (1984), Schrauf (1986) and others over a wide 
range of Reynolds number which includes the transition from laminar to turbulent 
flow, the details of the transition by spectral evolution have not been investigated for 
this system. On the other hand, for the circular Couette system, the measurements 
of the wave speed (rotation frequency) of the travelling azimuthal waves on the 
Taylor vortices have been progressively made. And the fundamental frequency of 
velocity fluctuation was considered by Coles (1965), Yahata (1978, 1979, 1980), 
Walden & Donnelly (1979), Fenstermacher, Swinney & Gollub (1979), Bouabdallah 
& Cognet (1980), Gorman & Swinney (1982) and King et al. (1984). And the hot-wire 
measurements of velocity were also reported by Townsend (1984). 

For the spherical Couette system, however, Belyaev et al. (1984) considered the 
fundamental frequency of velocity fluctuation for the ratio /3 of gap to inner-sphere 
radius greater than 0.4, where no TG vortex is detectable. Because the flow 
behaviour depends strongly on /3 for the spherical Couette system, the toroidal TG 
vortex has not been observed for ,8 > 0.4 (Waked & Munson 1978, Yavorskaya et al. 
1980). Schrauf (1986) investigated the influence of /3 on the first instability of the 
spherical Couette flow, and obtained the theoretical results that no TQ vortex exists 
for ,8 2 0.48. Wimmer (1976) was the only investigator to report the velocity 
measured for a small clearance in which the TG vortex is detectable, where neither 
the fundamental frequency of velocity fluctuation nor development of turbulence 
was considered. 

The present study has focused on the laminar-turbulent transition of the TG 
vortex flow in the spherical Couette system under the condition that the Reynolds 
number is increased stepwise by a quasi-static increase of the rotation frequency of 
the inner sphere from zero, when the final flow field of the last step is used for the 
initial condition. The vortex flows encountered as the Reynolds number is increased 
are a toroidal one, a toroidal and spiral one, a wavy toroidal and spiral one, a toroidal 
and spiral one, a toroidal one, a turbulent wavy toroidal one with shear waves and 
a turbulent toroidal one. The value o f@ = 0.14 is chosen in this experiment, because 
many studies on the fundamental frequency of velocity fluctuation have been 
reported for ,8 z 0.14 in the case of the circular Couette-Taylor vortex flow. The 
toroidal TG vortex occurring near the equator in the spherical Couette system is 
similar to the Taylor vortex in the circular Couette system. But the travelling 
azimuthal waves on the toroidal TG vortices are influenced by the Ekman boundary- 
layer effect for the spherical Couette system, so that their wave speed corresponds to 
that of the travelling azimuthal waves on the Taylor vortices for the finite cylinder 
in the circular Couette system, where the end effect appears. For the spherical 
Couette system, the special vortex or flow state, which is different from the circular 
Couette-Taylor vortex, is observed towards the pole from the equator. In  the 
spherical Couette system, as mentioned above, various disturbances, partly similar 
to and partly different from those in the circular Couette system, are observed in the 
transition to turbulence. Consequently, it is important that the various disturbances 
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FIGURE 1 .  Experimental apparatus for the simultaneous spectral and 
measurements by measuring the intensity of laser light' scattered by the alumin 
flow visualization. 
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observed in the circular and spherical Couette systems are compared with each 
other. 

In $ 2  we describe the experimental techniques used for the identification of the 
fundamental frequencies of velocity fluctuation. I n  $3  we explain the flow regimes 
over the Re range pursued in the present experiment and the experimental results. 
The fundamental frequencies are discussed and compared with other experiments in 
$4. Development to chaos is described in $5.  The conclusions are presented in $6. 

2. Experimental techniques 
The spherical Couette flow is considered under the condition that the Reynolds 

number of the flow (i.e. the rotation of the inner sphere) is quasi-statically increased 
from zero, where the flow regime is uniquely determined by only the Reynolds 
number, If the Reynolds number is increased with a given acceleration rate, the flow 
regime depends not only on the Reynolds number but also on the acceleration 
rate. 

The fundamental frequency of velocity fluctuation cannot always be identified by 
only the spectral analysis of the velocity fluctuation. When the velocity fluctuation 
has plural fundamental frequencies, many frequency components of their integer- 
linear combinations are produced by their nonlinear interaction. Therefore, it 
is difficult to identify the fundamental frequencies among them correctly. Thus, we 
have made not only the velocity measurement by a hot-wire anemometer but also 
simultaneous spectral and flow-visualization measurements by measuring the 
intensity of laser light scattered by the aluminium flakes suspended in the working 
fluid. The fundamental frequency could be identified by comparing the results of 



104 K .  Nakabayashi and Y .  Tsuchida 

Radius 

Inner Outer Clearancae Critiral 
sphere sphere ratio Reynolds 

Measurements R, (mm) R,  (mm) P number RP,  

880 87.68f0.005 0.1403 
87.65 0.01 ) 76.89f0.01 { Spectral and flow-visualization 

Velocity 

TABLE 1 .  Dimensions of the inner and outer spheres, the ratios and the critical Reynolds 
number in the two concentric-sphere systems. 
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FIGURE 2 .  Mirror arrangement for simultaneous observation of all spiral TG vortices. travelling 
azimuthal waves or shear waves around the annulus. 

these measurements. The methods of the simultaneous spectral and flow- 
visualization measurements and the velocity measurement are described below in 
detail. 

2.1. Simultaneous spectral and $ow-visualizaticn measurements 
The experimental apparatus for the simultaneous spectral and flow-visualization 
measurements is shown in figure 1. The values of the radii R, and R, of the inner and 
outer spheres, the clearance ratio p and the critical Reynolds number Re, are given 
in table 1. The clearance ratio p is defined as (Rz-  R,)/R,, and the Reynolds number 
Re as 27ck R:/v, where fa is the rotation frequency of the inner sphere, and v the 
kinematic viscosity of the fluid. The value of the critical Reynolds number, Re, = 

880, was obtained by the flow-visualization measurement. The accuracies of thc whip 
of the rotating inner sphere and the concentricity of the inner and outer spheres were 
assured to be within k0.015 mm and k0.01 mm, respectively. Water and 
glycerol-water solution of 50 % concentration were used for working fluids. Flow 
patterns we're visible in the working fluids at room temperature using a suspension 
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of small aluminium flakes that align with the flow. In  order to clarify the flow state, 
the whole spherical surface view and the meridian cross-section of the spherical 
annulus were observed by front lighting and slit illumination, respectively. 
Furthermore, in order to  determine the evolutions of the spiral and wave patterns 
such as the spiral TG vortices, the shear waves and the travelling azimuthal waves, 
four mirrors were used as shown in figure 2 and the entire annulus was observed at 
all times. This technique was employed in the circular Couette system by Gorman & 
Swinney (1982). 

The laser light (about 0.9 mm diameter) was illuminated in the flow normal to the 
meridian cross-section of the spherical annulus, as seen in figure 1 ,  and the intensity 
of the laser light scattered by the aluminium flakes was detected by the photodiode 
with a pinhole (0.7 mm diameter) located alongside the laser light. The photocurrent 
was digitized and recorded in the computer. The power spectrum P L ( f )  was 
computed from time series records, where f is the non-dimensional frequency defined 
by f/fo. The frequency of fluctuation f is expressed in units of the inner sphere 
rotation frequency &. The power spectrum of the scattered-light intensity can be 
obtained a t  any colatitude 0 by changing the locations of both the laser light and the 
photodiode. The non-dimensional spectral resolution Af ( = Af/fo = (2fN/Nd)/f0), 
where fN and N ,  are the Nyquist frequency and t$e number of !he above time-series 
records, respectively, is about 0.005-0.01 for f N  = (10-20) f o  and N ,  = 2048 or 
4096. 

The fundamental frequency of the velocity fluctuation related to the spiral or wave 
pattern such as the spiral TG vortices, the shear waves or the travelling azimuthal 
waves was identified by both the observation of the spiral or wave pattern by eye 
with a stopwatch or a stroboscope and the spectral analysis of the scattered-light 
intensity. 

2.2. Velocity measurement 
The schematic of the top view of the experimental apparatus and the measuring 
system for velocity measurement are illustrated in figure 3(a) .  The values of R,, 
R, and /3 of this apparatus are given in table 1.  The value of /3 is almost the same as 
that in figure I (both clearance ratios are about 0.14). The accuracies of the whip of 
the rotating inner sphere and the concentricity of the inner and outer spheres for this 
apparatus are of the same order as those in figure 1. The temperature of the working 
fluid (air) was measured by a thermosensor (thermistor) located a t  the north pole (the 
colatitude 0 = 0"). The rotation of the inner sphere was counted by a digital 
tachometer, and the increase in the rotation was made so slowly that the transition 
appeared quasi-statically. The increasing rate R* of a reduced Reynolds number 
R* = Re/Re, was kept to less than 0.00091/s. The hot-wire probe and the I-type 
prong used in the present experiment are shown in figure 3 (b,  c ) .  The support of the 
hot-wire probe was flush with the spherical surface of the outer sphere, as seen in 
figure 3(b) .  The prong was made as thin as possible, as seen in figure 3(c ) ,  in order 
to avoid the influence of the wake behind it. 

The output of the hot-wire anemometer (azimuthal velocity component v+) was 
amplified, low-pass filtered and sampled by a data recorder or a microcomputer. The 
mean azimuthal velocity v+, the power spectrum P ( f ) ,  the autocorrelation - coefficient 
R(7*) and the turbulence intensity (r.m.s. value) 8, = (.",)"." of the fluctuating 
azimuthal velocity 17$, were calculated from the output. The power spectrum of the 
velocity fluctuation was calculated by FFT, and the autocorrelation coefficient was 
obtained by the inverse FFT of the spectrum. The non-dimensional spectral 
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FIQURE 3. Experimental apparatus and hot-wire anemometry for the velocity measurement. 
(a )  Schematic of experimental apparatus and measuring system. ( b )  Schematic of hot-wire probe. 
(c) Geometry of hot-wire prong. 

resolution Af €or the velocity fluctuation is 0.005-0.01, the same as for scattered-light 
intensity. But occasionally the resolution is 0.0024 ( N ,  = 8192) for a high resolution 
spectrum. 

3. Outline of experimental results 
3.1. Flow regimes 

Seven flow regimes (IIT, IITS,, IIIWTS,, IIITS,, I I IT,  IVWTS, and IVT) are 
successively obtained when the reduced Reynolds number R* is quasi-statically 
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Flow 
rrgimr Characteristics a,*, R: iv hy , ,  8, fsf, rn f w  

TIT Laminarflow+ R,*= 1 2 - - - - 

toroidal TG 
vortex + 
secondary flow 

ITTS, Laminar flow+ RT, = 1.13 2 S ,  = 3 fbl = 1.315+0.009 - - 

toroidal and RT,, = 1.49 2 S,  = 2 fsz  = 0.854k0.006 - - 

spiral TG 
vortices + 
secondary flow 

IIIWTS, Laminar flow+ R,*, = 1.71 2 8, = 2 fs2 = 0.851 f0.004 m = 6 fwl = 2.64850.009 
wavy toroidal R& = 1.93 2 S,  = 1 fs3 = 0.427+_0.003 r r ~  = 6 fwl = 2.695+0.048 
and spiral TG R& = 2.80 2 AS, = 1 f s 8  = 0.426f0.004 m = 5 fw, = 2.256f0.027 
vortices + 
secondary flow 

toroidal and 
spiral TG 
vortices+ 
secondary flow 

IIITS, Laminar flow+ R,* = 5.05 2 S, = 1 fs3 = 0.436+0.014 - - 

I I IT  Laminar flow+ R,* 2 -  
toroidal TC: 
vortex with 
strong 
circulation + 
secondary flow 

IVWTS, Turbulent flow RZa = 10.5 2 S ,  = 14 f,, = 7.763k0.063 m = 1 fw3 = 0.495+0.013 
+ wavy R& = 14.2 2 S, x 6 f,, = 3.000+0.015 m = 1 fw3 = 0.478+0.019 
toroidal 
TG vortex+ 
secondary flow 
with shear 
waves 

IVT Fully developed R: = 19 2 - 
turbulent flow 
+ toroidal TG 
vortex + 
secondary flow 

TABLE 2. Regime and state transitions, their transition Reynolds numbers, and the values of the 
fundamental frequencies in each flow regime and flow state, when the Reynolds number is quasi- 
statically increased to the largest Reynolds number = 59) in the present experiment 

increased over the critical Reynolds number (R,* = 1) to the largest Reynolds 
number (RZax = 59) pursued in the present experiment. Their characteristics, flow 
states ( N ,  S,, m and SH), fundamental frequencies (f,, fw and fH) and transition 
Reynolds numbers R: (i = l a ,  lb ,  2a, 2b, 2c, 3, 4, 5a, 5b and 6) are given in table 2. 
The variables N ,  S,, m and S,  are the cell number of toroidal TG vortex cells in both 
hemispheres, the number of pairs of spiral TG vortices in each hemisphere, the 
wavenumber of travelling azimuthal waves on the toroidal TG vortices, and the 
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FIGURE 4. For caption see facing page. 
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FIGURE 4. Photographs of typical flows observed in some flow regimes taken by front lighting. ( ( 1 )  

IITS,(N = 2,  S,  = 3) at R* = 1.18; laminar toroidal and spiral TG vort,ires. ( b )  IIIWTS, (A' = 2. 
S,  = 1, m = 6) at R* = 2.15: wavy toroidal and spiral TG vortices. (c) IVR'TS, (A' = 2 ;  ni = 1 :  
S,  = 14) at R* = 12.7; turbulent wavy toroidal TG vortices and secondary flow with orderly shear 
waves. ( d )  IVWTS, (N = 2, m = 1, S ,  % 6) at R* = 15.9; turbulent wavy toroidal TG vortices and 
secondary flow with irregular shear waves. 

wavenumber of shear waves observed within the Ekman boundary layer near the 
outer sphere in each hemisphere, respectively. Among the symbols of the flow 
regimes, the symbol S, means that the spiral TG vortices occur only in the northern 
hemisphere (0" < 0 < 90"). Although the spiral TG vortices occurred in both 
hemispheres in Nakabayashi's experiment (1983) for p = 0.138, they occur only in 
the northern hemisphere in the present experiment for ,!3 = 0.14 (SITS,, IIIWTS, 
and IIITS,). The symbol S, means that the shear waves occur in both northern and 
southern (90" < 0 < 180") hemispheres. There are two kinds of transition ; regime 
transition and state transition. The former corresponds to the evolution of flow 
regime, the latter corresponds to the change for the numbers of the travelling 
azimuthal waves, the spiral TG vortices or the shear waves. R,* (i  = l a ,  2a% 3, 4, Tia 
and 6) are those for the regime transition, while R,* ( i  = lb ,  2b, 2c and 5b) for the 
state transition, and their values are obtained by the simultaneous spectral and flow 
visualization measurements. 

The photographs of typical flows observed in some flow regimes taken by front 
lighting are shown in figure 4 ( a d ) .  Figure 4 ( a )  shows the photograph in the flow 
regime IITS,. The schematic for the same regime given by Nakabayashi (1983) is 
shown in figure 12 (a). A pair of toroidal TG vortices near the equator and three pairs 
of spiral TG vortices in the northern hemisphere can be seen. The spiral TG vortices 
extend towards the north pole, and disappear in the secondary flow. They rotate 
about the axis of the inner sphere with a constant frequency. Figure 4(6) shows the 
photograph in the flow regime IIS WTS,. The schematic for the same regimc is shown 
in figure 12(b).  Six travelling azimuthal waves were observed on a pair of toroidal 
vortices near the equator. A pair of wavy spiral TG vortices was also obscrved in thc 
northern hemisphere. Figure 4 ( c )  shows the photograph in the flow regimc 
IVWTS, whose schematic is shown in figure 12(c). One travelling azimuthal wave 
appeared on a pair of toroidal TG vortices. And fourteen orderly shear waves, which 
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FIGURE 5.  Reynolds-number dependences of the mean azimuthal velocity components in the centre 
of the clearance a t  the colatitudes B = 80" and 90" and the meridian coordinate B of the sources 
(outflow-vortex boundaries) and/or sinks (inflow-vortex boundaries) of the toroidal cells observed 
on the inner sphere in a meridian cross-section of spherical annulus. ( a )  Reynolds-number 
dependences of the mean azimuthal velocity components in the centre of the clearance a t  0, 6 = 
80" and 0 ,  B = 90". The heavy solid and broken lines show the theoretical dependences a t  0 = 80" 
and go", respectively, for the laminar basic flow calculated by Nakabayashi (1976) and 
Nakabayashi et al. (1981). ( b )  Reynolds-number dependences of the meridian coordinate 0 of the 
sources (outflow-vortex boundaries) and/or sinks (inflow-vortex boundaries) of the toroidal cells 
observed on the inner sphere in a meridian cross-section of spherical annulus : 0 source ; , sink. 
The error bar $ shows the amplitude of the oscillation. The data 0, indicated by 0 show the value 
of 0 a t  which the spiral TG vortices break. 
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were observed within the secondary flow, ran in spiral fashion from the pole towards 
the equator, more or less perpendicular to the direction of the secondary flow near 
the outer sphere. They rotated about the axis of the inner sphere with a constant 
frequency. The same shear waves were reported by Buhler & Zierep (1984). When R* 
increases further, the shear waves become irregular and their wavelength irregularly 
changes in space and time, as shown in figure 4(d ) ,  but their wavenumber is 
estimated to be about 6. 

3.2. Mean velocity distributions 
Before the velocity fluctuation is considered, it is important to discuss the 
relationship between the velocity profiles and the flow regimes. Figure 5 ( a )  shows the 
Reynolds number dependences of the mean values Gc of the non-dimensional 
azimuthal velocity components in the centre of the clearance, 

U& = U$(Y = 0.5) = ~ ~ ( 7  = 0.5)/(2nR1fO), 

a t  6' = 80" and 90" (the equator). The variable ~ ( = ( r - R l ) / ( R 2 - R 1 ) )  is the non- 
dimensional wall distance from the inner sphere, where r is a radial coordinate. 
Figure 5 ( b )  shows the meridian coordinate 6' (shown in figure 1)  of the sources 
(outflow-vortex boundaries) and/or sinks (inflow-vortex boundaries) of the toroidal 
cells observed on the inner sphere in a meridian cross-section of spherical annulus. 

Below R;, the values of qc at  0 = 80" and 90" in figure 5 ( a )  agree well with the 
theoretical ones for the laminar basic flow calculated by Nakabayashi (1976) and 
Nakabayashi et al. (1981). In  the range R,* < R* 5 RT,, the value of Gc increases in 
agreement with tho theoretical one a t  0 = SO", but decreases from that a t  8 = 90". 
This decrease results from the fact that the fluid particle near the stationary outer 
sphere, which has a small azimuthal velocity component, moves into the centre 
region of the clearance, because above R,* two toroidal vortex cells appear, so that 
a sink (inflow-vortex boundary) locates a t  0 = 90", as can be seen in figure 5 (b ) .  For 
RT, 5 R* 5 Rfb, the value of Gc decreases a t  0 = 80" but increases at 6' = 90", 
because the toroidal vortex cells move towards the south pole with increasing R*, i.e. 
a source leaves from 0 = SO", but approaches 6' = 90", as shown in figure 5(b) .  For 
R& 5 R* 5 R:, the values of Gc at  0 = 80" and 90" change gradually, according to 
the locations of the source and sink. The value of vzc is almost constant a t  6' = 80" 
and decreases a t  6' = 90" for R: 5 R* 5 Rz. For R,* 5 R* 5 R&, i t  becomes large at 
6' = 80" and small a t  0 = 9O0, because the spiral TG vortices disappear and the 
toroidal vortex cells move towards the north pole, then the source and the sink locate 
a t  6' = 80" and 0 = 90", respectively, as shown in figure 5(b) .  Beyond about R&, both 
values of Gc at  6' = 80" and 90" approach about 0.5, because the chaos grows in the 
flow. Thus the Reynolds number dependence of Gc can be clearly explained by the 
inflow or outflow momentum transfer, depending on the location of the toroidal or 
spiral TG vortex boundary, as described above. 

Non-dimensional mean velocity profiles in the azimuthal component a t  6 = 90" are 
shown in figure 6. At R* = 0.941, the mean velocity T$ agrees well with the 
theoretical one for the laminar basic flow calculated by Nakabayashi (1976) and 
Nakabayashi et al. (1981), and its profile is slightly convex (upward) due to the 
outflow of the secondary flow. But a t  R* = 1.05, the profile becomes concave 
(upward) due to the inflow caused by the sink of TG vortex, as shown in figure 5 (b ) .  
At R* = 1.20 and 1.81, the mean velocity C ,  increases only in the centre region of the 
clearance with increasing R*. At R* = 5.09, however, it begins to  decrease. The value 
of t$ a t  R* = 6.52 becomes smaller over the annulus gap because of the inflow 
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F I O ~ ~ R E  6. I)istributions in the clearance of the mean azimuthal velocity romponent at the equator : 

R* = 15.1 : @, K* = 19.6; (3, R* = 57.3. The heavy solid line shows the theoretical distribution at 
0. R * = O . 9 4 1 ;  0 .  R*= 1.05: 0, R*=1.20; 0, R*= 1.81; 0 ,  R*=,5.09; 0 ,  R * = f j . 5 2 ;  0 ,  

R* = 0.941 for the laminar basic. flow calculated by Nakabayashi (1976) and Nakabayashi et al. 
( 1  98 I ) .  

momentum transfer, as mentioned above. At R* = 15.1, the profile has a maximum 
at  11 x 0.6 and the velocity gradient on the inner sphere becomes great. At R* = 19.6, 
the profile flattens out in the central region of the gap. At R* = 57.3, the profile 
approarhes that of a turbulent Couette flow and the velocity gradients on the inner 
and outer spheres become great. 

3.3. Velocity Jluctuations 
The temporal dependence of the non-dimensional azimuthal velocity components in 
the rcntre of the clearance, vzc, at 0 = 80" and 90" is shown in figures 7 ( a )  and 7 ( b ) ,  
respectively. The variable t* (=&) is the non-dimensional value of time i. The values 
of l/fsl, i/fs2 etc. are the fundamental periods of the various types of velocity 
fluctuations described later. At 0 = 80" (figure 7 a ) ,  a sinusoidal fluctuation is first 
detected, as shown a t  R* = 1.18 and 1.66. As R* is increased, a periodic fluctuation 
(R* = 1.81) appears, and then some noise is added to this fluctuation (R* = 2.15 and 
3.91). But the noisc almost disappears (A* = 5.63), and then the periodic fluctuations 
all disappear (IZ* = 6.71). But with a further increase in K*, a periodic fluctuation 
reappears with noise (R" = 12.7 and 15.9), and finally a fully developed turbulence 
(R* = 56.3) appears. At B = 90" (figure 7 b ) ,  the same types of fluctuation as those a t  
8 = 80" successively appear as R* is increased, but the waveshapes of the fluctuations 
differ from those at 8 = 80". 

The powcr spectra of the velocity fluctuations a t  8 = 80" are shown in figure 8. At 
R* = 1.18, the velocity fluctuation power spectrum P(  f )  contains a single sharp 
frequency component labelled fsl and its harmonics, which were confirmed to be line 
spectra within the accuracy of the measurement. The frequency component fsl 
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FIGURE 8. For caption see facing page. 
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FIGURE 8. Power spectra of the velocity fluctuations in figure 7 (a) .  The symbols V,  a, 0, 0,  a, 
0, @ and indicate the fundamental frequency components f s l ,  f s 2 ,  fs3 ,  fwl, fwz, f w 3 ,  f,, and f H 2  
(including their harmonics), respectively. The frequency components of f, and its harmonics, 
indicated by 0 ,  are the instrumental artifacts. (a) R* = 1.18. (b) R* = 1.66. ( e )  R* = 1.81. (d )  
R* = 2.15. (e) R* = 3.91. ( f )  R* = 5.63. (9) R* = 12.7. (h) R* = 15.9. (i) R* = 56.3. 

corresponds to the spiral TG vortices with three pairs of vortex cells (S, = 3) passing 
an observation point in the laboratory as described in $4.1. Another sharp frequency 
component labelled f,, (= l), which equals the rotation frequency of the inner sphere, 
was caused by the whip of the rotating inner sphere. However, the intensity of fo is 
negligibly small in comparison with that of fsl, so its effect cannot be suspected to 
influence the transition phenomena. 

At R* = 1.66, the spectrum contains a new single sharp frequency component 
labelled fs2, which corresponds to  the spiral TG vortices with two pairs of vortex cells 
(S, = 2). The relations between frequency components and kinds of vortices or waves 
are discussed in $4.1 in detail. At R* = 1.81, the spectrum contains the component 
fsz, a new sharp frequency component labelled fwl, their harmonics and many 
frequency components of their integer-linear combinations such as C,  fwl + C, fsz 
resulting from the nonlinear interaction between them, where C, and C,  are integers. 
The frequency component fwl corresponds to six travelling azimuthal waves (m = 6) 
passing the point of observation. For the case with plural fundamental frequency 
components of velocity fluctuation (e.g. fwl and fs2 at R* = 1.81), it is generally 
impossible to identify the fundamental frequencies only by means of the spectral 
analysis. In the present study, the fundamental frequencies are identified from the 
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FIGURE 9. Power spectra of the velocity fluctuations in figure 7 (b). The symbols 0. 0, 0 ,  m, 0, 0 ,  
A and indicate the fundamental frequency components fsz, fs3, fwl ,  fwz, fw,, f H l ,  fH2 and fwo 
(including their harmonics), respectively. The frequency components of fo and its harmonics, 
indicated by 0 ,  are the instrumental artifacts. (a) R* = 1.18. (b) R* = 1.66. (c) R* = 1.82. ( d )  
R* = 2.17. (e) R* = 3.90. (f) R* = 5.63. (9)  R* = 6.19. (h)  R* = 14.1. ( i )  R* = 15.9. (j) R* = 28.0. 

comparison of velocity power spectra with both the visualization and the 
simultaneous laser measurements, as described in $4.1. 

At R* = 2.15, a new sharp frequency component labelled f s 3  replaces the 
component fsz, and the background continuum level increases to  about m2/s. 
The component f s 3  corresponds to the spiral TG vortices with a pair of vortex cells 
(8, = 1) .  At R* = 3.91, a new sharp frequency component labelled fwz,  which 
corresponds to five travelling azimuthal waves (m = 5 ) ,  replaces the component fwl. 
At R* = 5.63, where the component fwz disappears, the spectrum contains only the 
component fs3 and its harmonics. The disappearance of fwz corresponds to the 
disappearance of the travelling azimuthal waves in the flow visualization. In  the 
range 6.10 < R* < 10.5, since no velocity fluctuation appears as previously 
described, the power spectrum becomes zero. At R* = 12.7, new broadband 
frequency components labelled fw3 and fH1 appear in the spectrum. They correspond 
to a travelling azimuthal wave (m = 1) and fourteen shear waves (AS, = 14), 
respectively. At R* = 15.9, a new broadband frequency component labelled fH2, 

which corresponds to around six shear waves (8, x 6), appears in the spectrum. 
With an increase of R*, the intensities of the components a t  fw3 and fH2 decrease, 
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FIGURE 10. Autocorrelation coefficients of velocity fluctuations in the centre of the clearance a t  the 
colatitudes 0 = 80" or 90". The variable AR is the decay of the autocorrelation coefficient, and 
l/fsl, l / f s 2 ,  etc., are the fundamental periods of the velocity fluctuations. (a )  R* = 1.18, 8 = 80". 
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( f )  R* = 5.63, 8 = 90". (9) R* = 15.9, 8 = 80". (h) R* = 56.3, 0 = 80". 
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while the background continuum level increases, and consequently the continuous 
spectrum is presented, as shown a t  R* = 56.3. 

The power spectra of the velocity fluctuations a t  6 = 90" are shown in figure 9. The 
spectral evolution at  8 = 90" is almost the same as that at 6' = 80". But the sharp 
frequency components labelled Lq2 and fwo appear in the spectra for R* = 1.18 and 
6.19, respectively, which are undetected for the same R* at  0 = 80". This will be 
discussed in $4.2. 

The autocorrelation coefficients R(r*) of velocity fluctuations are shown in figure 
10(a-h). The absciss? r* in the same figure is a non-dimensional time lag which is 
stated in units of i/fo. The AR( f )  is defined as 1 -R(l/f) and describes the degree of 
randomness of the velocity fluctuation, as mentioned in $5. l/fsl, 1/fs2, l/fs3 and 
l/fw3 are the delay times at  which stronger autocorrelations appear (see figure 10). 
Figures 10 ( a )  and 10 ( 6 )  show almost cosine-type autocorrelations with the periods of 
l/fsl and 1,Jfs2, respectively, which indicates that the velocity fluctuations are almost 
sinusoidal. Figures 10 (c)-lO ( e )  show a strong autocorrelation with the period of 
l/fs2 or l / f s 3  and a weak one with the period of i/fwl or l/fw2. Thus, the 
autocorrelation related to the spiral TG vortices is stronger than that related to the 
travelling azimuthal waves, so AR( f )  = AR( f,). Figure 10( f )  indicates the strong 
periodic autocorrclation with the period of l/fs3. Figure 10(g) shows the strong 
periodic autocorrelation with the period of l/,fw3 and the slightly weaker one with the 
period of l/fH2. Accordingly, the autocorrelation related to  the travelling azimuthal 
waves is usually stronger than that related to the shear waves, so AR( f )  = AR( fw,). 
Figure 10(h) shows the autocorrelation of a turbulent flow. 

4. Fundamental frequencies 
4.1. Identi$cation of fundamental frequencies 

The power spectra PL( f) of the scattered laser-light intensity a t  6 = 80" and 7 = 0.5 
are shown in figure 11 (a-f ). The frequency component labelled f o  as well as that  in 
the velocity fluctuation power spectra was caused by the whip of the rotating inner 
sphere, as previously described. From the flow visualizations and the simultaneous 
spectral measurements by the scattered laser-light, the sharp frequency component 
fsl in figure 11 ( a )  was found to correspond to  the spiral TG vortices with three pairs 
of vortex cells ( S ,  = 3, figure 4 a )  passing the observation point in the laboratory. In  
addition to this visual and spectral identification, the agreement of the value of f s l  
in figure 11 ( a )  with that in figure 8 ( a )  (the velocity fluctuation power spectrum) 
shows definitely that fsl is the fundamental frequency component of the spiral TG 
vortices of S ,  = 3. 

From a similar consideration, the sharp frequency components f s 2  and f s 3  in figures 
8 and 11 are identified as the fundamental frequency components of the spiral TG 
vortices of S ,  = 2 and 1, respectively. By the same flow visualization technique, the 
simultaneous spectral measurements and the agreement of frequency components of 
fwl between figures 11 ( c )  and 8 ( d ) ,  f w l  was found to be the fundamental frequency 
component of six travelling azimuthal waves (m = 6) passing the observation 
point. 

Similarly, i t  is concluded that the frequency components f w z  and fw3 in figures 8 
and 11 are the fundamental frequency components of the travelling azimuthal waves 
of m = 5 and 1, respectively. And it  is also concluded that the frequency components 
fH1 and fH2 in figures 8 and 11 are the fundamental frequency components of fourteen 
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FIGURE 1 1 .  For caption see facing page. 
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shear waves (S, = 14, figure 4c)  and about six shear waves (S, z 6 ,  figure 4 d )  
passing the observation point, respectively. 

The frequency components fsz, fs3, fwl, fw2, fw3, f H 1  and fH2 at 0 = 90" in figure 9 
were also found to be the same fundamental frequency components as those a t  
0 = 80" from the same consideration as described above. 

The types of the fundamental frequencies found in the present experiment are 
summarized as follows. The three kinds of fundamental frequencies, f s ,  fw and f H ,  
correspond to the spiral TG vortices, the travelling azimuthal waves on the toroidal 
TG vortices and the shear waves within the secondary flow, respectively. The 
schematics of the flows in typical flow regimes and these fundamental frequencies are 
shown in figure 12. 

4.2. Spatial characteristics and evolution of fundamental frequency components 
The relationship between the fundamental frequency components expressed by their 
wavenumbers and the colatitude is shown in figure 13. The fundamental frequency 
components could be detected not only over the &ranges shown by solid lines, where 
the corresponding disturbances such as the spiral TG vortices, the travelling 
azimuthal waves and the shear waves were clearly observed (figure 5 b) ,  but also over 
the 0-ranges indicated by broken lines, where they were not clearly observed. The 
values of the fundamental frequency components are constant independently of 0. 
The power spectra of the velocity fluctuations measured by the hot-wire anemometer 
a t  7 = 0.1, 0.5 and 0.9 are shown in figure 14(a-e),  respectively. Although the peak 
values of power at fw3 and f H 2  depend on 7, the values of f w 3  and fH2 are independent 
of 7. Thus, it is known that the values of fundamental frequency components are 
independent of both 0 and 7. 

The relationship between the fundamental frequency components and R* is shown 
in figure 15, compared with that in the circular Couette flow. An indication 0 shows 
the values of the fundamental frequency obtained by the spectral analysis of the 
scattered light intensity, while X ,  + and 0 indicate those obtained from the 
velocity fluctuation spectra. The x indication shows the data in which there is 
complete agreement between the frequency values a t  0 = 80" and 90'. The symbols 
+ ( f s l )  a t  0 = 80" and 0 (fs2 and fwo) at 0 = 90" show discrepancy. On the other 
hand, the data (0) obtained by the scattered light intensity agree well with those 
obtained by the velocity fluctuation except for fs2 (0)  for R* M 1.2 and fwo for 
R* z 6.2. 

In  order to  investigate the discrepancy which can be seen in fs2 for R* M 1.2 and 
in f w o  for R* z 6.2, the following additional experiments were pursued by means of 
the simultaneous spectral and flow-visualization measurements. First of all, the 
Reynolds number was increased from zero to  R* = 1.18 with some acceleration, but 
not quasi-statically. The flow regime of IITS,(N = 2 ,  S ,  = 2 )  and the fundamental 
frequency component fs2 were obtained, but not fsl, as shown in figure 16(a). Next, 

I 

FIGURE 1 1 .  Power spectra of the scattered laser-light intensity in the centre of the  clearance at the 
colatitude 8 = 80". The symbols V, 0, 0, 0,  , 0, @ and indicate the fundamental frequency 
components fsl, fsz, f s 3 ,  fwl, f,,, f,,, fH1 and fH2 (including their harmonics), respectively. The 
components of fo and its harmonics, indicated by 0,  are the instrumental artifacts. (a)fs, in 
IITS, ( N  = 2,S, = 3) at R* = 1.18. ( b ) f s 2  in IITS, (N = 2, S ,  = 2) at R* = 1.66. ( c ) f s 3  andf,, in 
IIIWTS, (N = 2, S,  = 1, m = 6) at R* = 2.15. ( d ) f s 3  andf,,,, in IIIWTS, (N = 2, S ,  = 1, m = 5) 
at R* = 3.91. ( e )  f,, andf,, in IV WTS, (N = 2, m = 1,  S,  = 14) at R* = 12.7. ( f )  fw3 and fHz in 
IVWTS, ( N  = 2, m = 1, S ,  z 6) a t  R* = 15.9. 
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FIGURE 13. Relationship between the fundamental frequency components expressed by their 
wavenumbers and the colatitude, obtained by  the power spectra of the scattered laser-light 
intensity in the centre of the  clearance. The solid lines conjoining solid circles (experimental result) 
indicate the meridian ranges, where the corresponding disturbances such as the spiral TG vortices, 
the travelling azimuthal waves and the shear waves were clearly observed. The broken lines 
conjoining empty circles (experimental result) indicate the meridian ranges, where they were not 
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the 12* was similarly increased from zero to  H* = 6.19. then thc flow regimc 
IIIWT(X = 2, rn = 4) andfw(m = 4) ( =,fw,) were obtained, as shown in figure 16(6). 
Prom these results we understand that  the discrepancy at R* % 1.2 comes from thc 
difference of flow states bctwcen AS, = 2 and kSP = 3. which was caused by the fact 
that  the wake behind the hot-wire prong located at  6' = 90" is not so negligibly small 
as  tha t  at 6' = 80" for K *  % 1.2. The discrepancy a t  R* % 6.2 also comes from the 
similar difYercnce of flow regimes bctwecn 111 WT and IIIT. However, no disc~epancy 
can be seen over the other rangc of R*. Hencc. t h r  data  of hot-wire measurements 
are assured as well as  those of simultaneous spectral and flou -visualization 
measurements n ithout the wake. cxcept for those of hot-wire measuremtwt a t  
8 = 90" for R* % 1.2 and 6.2. 

The fuiidamental frequencies fs. f H  and f w  which arc confirmed as mentioned 
abovc, are summarized in table 2 .  The flow regimes of IITS, and HITS, arc singly 
periodic. regimes characterized by a single-frequency component ( f s ) ,  while thc flow 
rcgimes of IIIWI'S, and IV WTS, arc doubly periodic regimes characterized by two 
fundamental frequency components [ f s ,  f w  I arid [fw. fH], rcspectirely. In thcl ranges 
R: < Iz* < R,*, and 12: < R* < R;,,, no fundamental frequency components could 
be detccted, i.e. in the former range the velocity fluctuation disappearcd (the 
relaminarizing flow occurs), whereas in thc latter range it became chaotic.. 

On the other hand, Buhler & Zierep (1984) obtained two fundamental frequency 
components v1 and v2 in the TC: vortex flow with two toroidal c ~ l l s  for /3 = 0.177, as 
shown in figure 15. v 1  is the fundamental frequency cwmponent of the shear waves 

FL\I 194 
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FIGURE 15. Reynolds-number dependences of t'he fundamental frequency components of the 
velocity fluctuations : 0 ~ present data  obtained from the po\ver spectra of thc scattered light 
int.enuity ; x , present da.ta obtained from the ve1orit.y fluctuation power spectra both a t  the 
colatitudes 0 = 80" and 90"; + . present data  obtained from the velocity fluctuation power spectra 
at # = 80"; 0 ,  present data  obtained from the velocity fluctuation power spectra a t  # = 90'. 

and m,,. 
data .  and R:>, = 1.2, R:y, = 1 0 . 1 ,  R:)3 = 12. tl:y4 = 19.3. h!:y6 = 21.9, transition Iiepriolds 
numbers for the regime t,ransition. respectively, obtained in the circwlar Couette flow for /l = 0.14 
and r = 20.0 by Fenst.ermacher ~t a!. (1979). 

. v 1  and v2. dat,a for /3 = 0.177 obtained by Riihler Rr. Zierep [1984); ~ - -, ww. 

within the secondary flow, although their wavenurnber has not been rcported. The 
value of v1 is much smaller than that of.fH,. The physical characteristic of v2 is not 
described in detail. Although v 2  is considered a fundamental frequency of a secondary 
instability established within the Taylor vortices in their paper, the valuc of v 2  is 
very diflerent from the present .fw3, bcing rather near the value of f H 2 .  

The Reynolds number dependences of the rotation frequencies of the spiral TG 
vortices, the travelling azimuthal waves and the shear waves, f s / S , ,  j W / m  and 
fH/SH, are shown in figure 17.  The values of fs/X,, fw/m and fH/SH are nearly 
constant as the Reynolds number is increased, and differ slightly from one 
ano t her. 

As for the rotation frequency f w / m  in the spherical Couettc flow, thc clearanw 
ratio dependence of f w / m  is shown in figure 18. The range of uncertainty means the 
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FIGURE 16. Scattered light intensity spectra in the centre of the clearance a t  the equator under the 
condition tha t  the Reynolds number was increased with some acceleration rate. ( a )  fs2 in IITS, 
(X = 2, S, = 2 )  at K* = 1.18. The 0 indicates the fundamental frequency componentJ,, and it.s 
harmonics. The frequency component f,, indicated by is an instrumental artifact. ( b ) f ,  (m  = 4) 
in IIIU’T (N  = 2,  m = 4) at R* = 6.19. H indicates the fundamental frequency component. 
f, ( m  = 4) and its harmonics. 

range between the maximum and minimum values in the relationship between 
f w / m  and B* as shown in figure 17.  The Taylor instability occurs in the present 
data for p = 0.14, but not in those of Yavorskaya et al. (1980) for p = 0.398-1.33, as 
described previously. The present data, however, seem to be on the extrapolated 
curve of those of Yavorskaya et al. 

4.3. Comparison with, circular Couette $ow 
Toroidal TG vortices near the equator in the spherical Couette system are similar to 
Taylor vortices in the circular Couette system, but the former is influenced by the 
Ekman boundary layer. Therefore, it is interesting in the consideration of the Ekman 
boundary-layer effect on the toroidal TG vortices to discuss the fundamental 
frequencies and the transition Reynolds numbers, comparing both the spherical and 
circular Couette systems. 

In figure 15, R&l-R&5 arc the transition Reynolds numbers for regime transition, 
and ww, wMw and wB are the characteristic frequency components which were 
obtained in the circular Couette flow for the aspect ratio T = 20.0 and /3 = 0.14 by 
Fenstermacher et al. (1979). ww and wB are the fundamental frequency component of 
the travelling azimuthal waves and the broad component of a weak turbulence, 
respectively. Gorman & Swinney (1982) found that wMw is the frequency component 
of the modulated travelling azimuthal waves. Since the value of transition Reynolds 
number for the onset of the travelling azimuthal waves in the spherical Couette flow 
(R& = 1.71) is greater than in the circular Couette flow (R&, = 1.2), the Ekman 
boundary-layer effect in the spherical Couette flow acts on the stable side for the 

5-2 
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FIGVRE 17. Reynolds-number dependences of the rotation frequencies of the spiral TG vortices, the 
travelling azimuthal waves and the shear waves : V, fs,/3 ; 8, fs2/2 ; 0, fs3/l ; 0 ,  fw,/6 ; , fw,/5 ; 
0, fw3/1 ; 0,  fH,/14 present data obtained from the power spectra of the scattered light intensity; 
x , present data obtained from the velocity spectra at the colatitudes 0 = 80" and 90". The data 
of w , / m  in the circular Couette flow: ---, B = 0.140, r= 20.0 (aspect ratio), m, = 4, 5 
(Fenst.ermacher et al. 1979); ---, /J' = 0.152, r,,, = 80 (the largest aspect rat,io). m = 4, 5 (King 
d al. 1984): - - - - - - .  b=  0.144. r= 27.9, m = 3-7 (Coles 1965). 

onset of the travelling azimuthal waves. As the Reynolds number is increased from 
R* z 3, the wavenumber changes to  m = 5 ,  m = 0 (travelling wave disappears) and 
m = 1 by turns in the spherical Couette flow. But in circular Couette flow, five waves, 
four waves, four waves with the modulation and four waves appear by turns. The 
temporary disappearance of the travelling waves and no modulation are charac- 
teristic of the travelling azimuthal waves in the spherical Couette flow. 

The rotation frequencies ww/m of the travelling azimuthal waves, as shown in 
figure 17, are for relatively large aspect ratios and approximately the same clearance 
ratios as the present one (/3 = 0.14) in the circular Couette flow. Although the values 
of w w / m  decrease monotonically with increasing R* until they reach their plateaux, 
the rotation frequency f w / m  in the spherical Couette flow does not decrease aria are 
much greater than w,/m for the higher range in R*. 

On the other hand, the ranges of maximum and minimum values of ww/m over the 
all R" range in the circular Couette flow of I',',,, = 26--115 and /3 = 0.0526-0.588, 
obtained by King et al. (1984), are shown in figure 18. The rotation frequency in the 
spherical Couette flow ( fw/m)  shows the same tendency as w,/m in the circular 
Couette flow, but the former is greater than the latter throughout the range o f p .  
King et al. (1984) demonstrated that w w / m  has the tendency of monotonic increase 
as a decrease of aspect ratio r. From the above-mentioned relation between w,/m 
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FTCITRF, 18. Clearance-ratio dependence of the rotation frequency of the travelling azimuthal 
waves. The range of uncertainty means the range between the maximum and minimum values in 
the relationship betweenf,/m and R* or between o,/m and R* : 0 (maximum) and + (minimum), 
present data  for /3=0.14; 0 (maximum) and (minimum), data  for p=O.398-1.33 of 
Yavorskaya et al. (1980) in the spherical Couette flow ; 0 (maximum and (minimum). data  for 
/3 = 0.0526---0.588 and r,,, = d G l 1 5  of King et al. (1984) in the circular Couette flow. 

and r, the end effect of the cylinders is known to increase ww/m in the circular 
Couette flow. Since the end effect in the circular Couette flow corresponds to the 
Ekman boundary-layer effect in the spherical Couette flow, the Ekman boundary- 
layer effect is presumed to increase f w / m  in the spherical Couette flow. 

Remarkable characteristics of the spherical Couette flow are described as follows. 
As mentioned previously, neither the modulation of the travelling azimuthal waves 
such as wMw nor the weak turbulence such as wB could be detected in the present 
spherical Couette flow measurements, where the Reynolds number was quasi- 
statically increased from zero. However, under the condition that the Reynolds 
number is increased with a given acceleration, the modulation of the travelling 
azimuthal waves appears as will be reported in our next paper. And the fundamental 
frequencies f s  and f H  are characteristic only of the spherical Couette flow. 

5. Development of turbulence 
Sincc a velocity fluctuation autocwrrelation coefficient approaches an uncorrelated 

onc as the chaotic element increases in a flow, Yavorskaya et at. (1980) defined the 
decay of the velocity fluctuation autocorrelation coefficient, AR( f )  = 1 -R( l / j ) ,  as 
the quantitative value dcscrihing the degree of randomness of the velocity fluctuation 
in the spherical ('ouette flow. On the other hand, Sato &, Saito (1975) defined a 
randomness factor z ,  the ratio of the energy contained in a background continuous 
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FIGURE 19. Growth in t'he degree of randomness in the velocity fluctuation. defined by the decay 
of the autocorrelation coefficient A R ( f )  and the randomness factor z ,  in  the centre of the rlearancr 
at the colatitudes 0 = 80" and 90". The symbols 0, 0, 0, 0 and 0 indicate the decay of the 
autocorrelation coefficient Al?(fsl), AR(fs2) ,  AR( fS3) ;  AR(fHI) and AH(f,,.,) at 0 = 80". The 
symbols Q, 0 ,  0 and indicate the decay of the autocorrelation coefficient AR(L3J, AI<(Ls3) ,  
AR(fw, /3)  and AR(fw3)  at, 0 = 90". The symbol indicates z at 90". 

spectrum ([total fluctuation energy] - [regular fluctuation energy contained in line 
and broadband spectral]) t o  the total fluctuation energy, for a two-dimensional 
wake. We also adopted the same definitions, AR( f) and z .  as the valucs describing the 
degree of randomness of the velocity fluctuation. 

The growth of the value of AR and z in the centre of the gap are shown a t  8 = 80" 
and 90" in figure 19. Below RZ, the curve of AR(8 = 90") shows a Rcynolds-number 
dependence similar to that of AR(8 = 80") or z ( B  = go"), but the former is greater 
than the latter. And the value of z is smaller than that of AR. The valucs of A.M(B = 
80" and 90") and z(8 = 90") become zero in the range RZ < R* < RZa, where the 
velocity fluctuation disappears and the flow returns to the timc-indc pendent toroidal 
TG vortex flow (the flow regime IIIT, table 2 ) .  Beyond R&, z ( 8  = 90") increases in 
the same way as AR(8 = 90") with increasing R*. However, AR(0 = 80") first 
increases earlier than AR(8 = 90") decrcases in 12 5 R* 5 15 and then increases 
later than AR(8 = 90") with increasing R*. Beyond R&, the chaos of the flow can be 
guessed to grow much more for 8 = 90" than for 0 = 80". 

The non-dimensional turbulence intensities (r.m.s. values 6; = 6,/(2xR,f0)) of 
the fluctuating azimuthal velocity component are shown in figure 20. Figure 2 0 ( a )  
gives the Reynolds number dependences of the turbulence intensities a t  q = 0.5, 
6& = !$(r = 0.5), for 0 = 80" and 90". In  the range RZ ,< R* < RZ, the turbulence 
intensity a t  8 = 80" is greater than that at 8 = 90°, and the Reynolds number at  
which the turbulence intensity becomes maximum for 0 = 80" is different from that 
for B = 90". These Reynolds numbers for 8 = 80" and 90" are not in agreement with 
the Reynolds number a t  which AR or z has the maximum value (cf. figures 19 and 
20a). Accordingly, it is argued that the root-mean square value of the velocitJ- 
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FIGURE 20. Relationship between the turbulence intensity of' the fluctuating azimuthal velocity 
component and the Reynolds number. ( a )  Turbulence intensity in the centre of the clearancbe at 
colatitudes 0 = 80" and 90": 0, 0 = 80"; 0 ,  6' = 90". ( b )  Distribution in the clearance of the 
turbulence intensity at the equator: 0,  R* = 1.19; 0,  R* = 15.1; 0 ,  R* = 19.6. 

fluctuation corresponds directly with the degree of randomness of the flow, but 
rather that  the energy of velocity fluctuation contains the greater part of energy as 
the regular periodic motion in the lower R* value range. 

In the range RZ < R* < RZa, ii2c as well as AR and z becomes zero. because the 
relaminarization seems to occur, as described previously. Above R&, since the 
travelling azimuthal waves and the shear wavcs appear, both turbulence intensities 
4,& for 6 = 80" and 90" increase. But, beyond about RZ,, they tend to decrease slightly 
with an increase of R*. Figure 2 0 ( 6 )  shows the distributions of the turbulence 
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intensity 6; in the gap at 0 = 90". The profilc of 4; a t  R* = 1.19, where the spiral TG 
vortices appear, is almost symmetric with respect to 7 = 0.5. But the profile at  
R* = 15.1 is asymmetric with respect t o  71 = 0.5. Binccf,, and fH2 are obtained for 
t) = 90" around R* = 14-19. the reason why 6; becomes greater near thc outer sphere 
would be that the shear waves influence the velocity fluctuation closer to thc outw 
sphere than to the inner sphere, and that the chaos grows near thc outer sphere. Thc 
profile a t  K* = 19.6 approaches a symmetric profilc with rcspect to = 0.5,  bec.ausc 
the chaotic clement increases in thc flow with R*. 

6. Conclusions 
We have considered the characteristics of the laminar-turbulent transition of the 

Taylor- Giirtler (TG) vortex flow in the spherical Couette system. With increasing 
Reynolds number, the mean velocity profile in the gap is influcnccd by thc location 
of both sink and source on the inner sphere, because of the momentum transfer 
depending on the inflow and outflow boundaries of the stationary vortices which can 
mox7c with the Reynolds number. On thc other hand, thc fluctuating vt4ocity 
cwrrcsponds to the periodic or unperiodic* motions of vortircs. 

By velocity and simultaneous spectral and flow-visualization measurements. threc. 
lrintls of fundamental frcqucmcicxs, fs, fw andf,, were found, which correspond to the 
spiral TG vortices, the travelling azimuthal waves on toroidal TG vortices and thc 
shear waves within the Ekman boundary layer, respcvAively. The interaction 
between fundamental frequencies. e.g. wave interaction betwcen the travelling 
waves and shear waves. cannot be observed by flow visualization. but can be 
detected by the scattered-light measurements and velocity measurements over a 
wider range of the meridian angle. Each fundamental frequency has a value 
completely independent of the meridian angle and wall distance from the inncr 
sphere. Although each fundamental frequency has a discrete value depending on the 
wavenumber which varies with the Reynolds number, each rotation frequcmcy (i.c. 
fundamental frequency scaled by thc wavenumbcr) has a value almost independent 
of the Reynolds number. Thc rotation frequencies difTer in terms of the spiral TG 
vortices, the travelling azimuthal waves and the shear waves. The spiral TG vortices 
and the shear waves are characteristic of the spherical Couette flow, although the 
travelling azimuthal wave is a common type of disturbance appearing in both the 
spherical and circular Couette flows. The components of the modulated waves (wMw) 
and the weak turbulence ( w B )  appearing in the circular Couette flow could not be 
detected in the present experiment. In spherical Couette flow, the preturbulent flow 
is also characterized by not more than two fundamental frequency components. 

Anotlher characteristic of thc present transition is the occurn'nce of relaminarizing 
flow in R,* < K* < R&, where the non-dimensional r.m.s. value of fluctuating 
velocity is almost zero, with increasing Rcynolds number, after its first invrease and 
the following decrease. The non-dimensional r.m.s. values of fluchating velocity, the 
decay of the autocorrelation coefficient and the randomness factor also increase with 
the appearance of shear waves. However, the non-dimensional r.m.5. values of 
fluctuating vclgcity then gradually decrease with the development of the chaos in the 
flow. 
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