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The laminar-turbulent transition of the Taylor—Gortler (TG) vortex flow in the
clearance between two concentric spheres with only the inner sphere rotating
(spherical Couette flow) is investigated by velocity measurement and simultaneous
spectral and flow-visualization measurements by measuring the intensity of light
scattered by the aluminium flakes used in flow visualization in the case of a relatively
small ratio of the clearance to inner-sphere radius (clearance ratio § = 0.14). An
azimuthal velocity component has been measured by a constant-temperature hot-
wire anemometer at two different colatitudes (meridian angles) §; 6 = 80° and 90°
(the equator). A critical Reynolds number, some transition Reynolds numbers, flow
regimes and flow states are obtained by the simultaneous spectral and flow-
visualization measurements. The flow state is expressed by the number of toroidal
TG vortex cells N, that of spiral TG vortex pairs Sp, the wavenumber of the
travelling azimuthal waves on the toroidal TG vortices m and the wavenumber of
shear waves Sy. The mean velocity distribution and the characteristic values of the
fluctuating velocity, such as autocorrelation coefficient, power spectrum and
turbulence intensity (r.m.s. value), are considered over a great range of Reynolds
number Re. Three kinds of fundamental frequencies of the velocity fluctuation are
discovered and their characteristics are clarified by means of the velocity
measurement and the simultaneous spectral and flow-visualization measurements.
The three kinds of fundamental frequencies expressed by f;, fw and fy correspond to
the spiral TG vortices, the travelling azimuthal waves and the shear waves,
respectively. These fundamental frequencies are independent of both 6 and wall
distances from the inner sphere, but depend strongly on Re. Although the rotation
frequency of the travelling azimuthal waves (or wave speed) in the circular Couette
flow decreases monotonically with increasing Reynolds number until it reaches a
plateau, the values of the rotation frequencies of the spiral TG vortices, the travelling
azimuthal waves and the shear waves in the spherical Couette flow, fi/Sp, fw/m and
fu/Sk, are nearly constant as the Reynolds number is increased, and differ slightly
from one another.

1. Introduction

In this paper the laminar—turbulent transition is considered for the Taylor-Gértler
(TG) vortex flow between two concentric spheres with the inner sphere rotating and
the outer sphere at rest (spherical Couette system). This kind of transition, which is
called transition by spectral evolution, is similar to the transition in the Taylor
vortex flow between two concentric cylinders with only the inner cylinder rotating
(circular Couette system), as well as Rayleigh-Bénard convection, where the velocity
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fluctuation power spectrum changes gradually as a cascade process from a line
spectrum to a continuous one by broadening of the initially sharp spectral lines.

Recently, many studies on this kind of transition have been reported except for the
case of the spherical Couette system. Although the flow in the spherical Couette
system has been investigated by Sawatzki & Zierep (1970), Munson & Menguturk
(1975), Wimmer (1976), Waked & Munson (1978), Nakabayashi (1978), Krause
(1980), Belyaev et al. (1979, 1984), Yavorskaya et al. (1980), Bartels (1982),
Nakabayashi (1983), Tuckerman (1983), Biihler & Zierep (1983, 1984), Dennis &
Quartapelle (1984), Schrauf & Krause (1984), Schrauf (1986) and others over a wide
range of Reynolds number which includes the transition from laminar to turbulent
flow, the details of the transition by spectral evolution have not been investigated for
this system. On the other hand, for the circular Couette system, the measurements
of the wave speed (rotation frequency) of the travelling azimuthal waves on the
Taylor vortices have been progressively made. And the fundamental frequency of
velocity fluctuation was considered by Coles (1965), Yahata (1978, 1979, 1980),
Walden & Donnelly (1979), Fenstermacher, Swinney & Gollub (1979), Bouabdallah
& Cognet (1980), Gorman & Swinney (1982) and King ef al. (1984). And the hot-wire
measurements of velocity were also reported by Townsend (1984).

For the spherical Couette system, however, Belyaev et al. (1984) considered the
fundamental frequency of velocity fluctuation for the ratio # of gap to inner-sphere
radius greater than 0.4, where no TG vortex is detectable. Because the flow
behaviour depends strongly on g for the spherical Couette system, the toroidal TG
vortex has not been observed for § > 0.4 (Waked & Munson 1978, Yavorskaya ef al.
1980). Schrauf (1986) investigated the influence of £ on the first instability of the
spherical Couette flow, and obtained the theoretical results that no TG vortex exists
for #>0.48. Wimmer (1976) was the only investigator to report the velocity
measured for a small clearance in which the TG vortex is detectable, where neither
the fundamental frequency of velocity fluctuation nor development of turbulence
was considered.

The present study has focused on the laminar—turbulent transition of the TG
vortex flow in the spherical Couette system under the condition that the Reynolds
number is increased stepwise by a quasi-static increase of the rotation frequency of
the inner sphere from zero, when the final flow field of the last step is used for the
initial condition. The vortex flows encountered as the Reynolds number is increased
are a toroidal one, a toroidal and spiral one, a wavy toroidal and spiral one, a toroidal
and spiral one, a toroidal one, a turbulent wavy toroidal one with shear waves and
a turbulent toroidal one. The value of # = 0.14 is chosen in this experiment, because
many studies on the fundamental frequency of velocity fluctuation have been
reported for § = 0.14 in the case of the circular Couette-Taylor vortex flow. The
toroidal TG vortex occurring near the equator in the spherical Couette system is
similar to the Taylor vortex in the circular Couette system. But the travelling
azimuthal waves on the toroidal TG vortices are influenced by the Ekman boundary-
layer effect for the spherical Couette system, so that their wave speed corresponds to
that of the travelling azimuthal waves on the Taylor vortices for the finite cylinder
in the circular Couette system, where the end effect appears. For the spherical
Couette system, the special vortex or flow state, which is different from the circular
Couette-Taylor vortex, is observed towards the pole from the equator. In the
spherical Couette system, as mentioned above, various disturbances, partly similar
to and partly different from those in the circular Couette system, are observed in the
transition to turbulence. Consequently, it is important that the various disturbances
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Freure 1. Experimental apparatus for the simultaneous spectral and flow-visualization
measurements by measuring the intensity of laser light scattered by the aluminium flakes used in
flow visualization.

observed in the circular and spherical Couette systems are compared with each
other.

In §2 we describe the experimental techniques used for the identification of the
fundamental frequencies of velocity fluctuation. In §3 we explain the flow regimes
over the Re range pursued in the present experiment and the experimental results.
The fundamental frequencies are discussed and compared with other experiments in
§4. Development to chaos is described in §5. The conclusions are presented in §6.

2. Experimental techniques

The spherical Couette flow is considered under the condition that the Reynolds
number of the flow (i.e. the rotation of the inner sphere) is quasi-statically increased
from zero, where the flow regime is uniquely determined by only the Reynolds
number. If the Reynolds number is increased with a given acceleration rate, the flow
regime depends not only on the Reynolds number but also on the acceleration
rate.

The fundamental frequency of velocity fluctuation cannot always be identified by
only the spectral analysis of the velocity fluctuation. When the velocity fluctuation
has plural fundamental frequencies, many frequency components of their integer—
linear combinations are produced by their nonlinear interaction. Therefore, it
is difficult to identify the fundamental frequencies among them correctly. Thus, we
have made not only the velocity measurement by a hot-wire anemometer but also
simultaneous spectral and flow-visualization measurements by measuring the
intensity of laser light scattered by the aluminium flakes suspended in the working
fluid. The fundamental frequency could be identified by comparing the results of
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Radius
Inner Outer Clearance Critical
sphere sphere ratio Reynolds
Measurements R, (mm) R, (mm) /i number Re
Spectral and ﬂow-visualizat-ion} {87.65i0.01 0.1399
Velocity 7689001 \g76830.005 01403 880

TasLE 1. Dimensions of the inner and outer spheres, the ratios and the critical Reynolds
number in the two concentric-sphere systems.
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Fraure 2. Mirror arrangement for simultaneous observation of all spiral TG vortices, travelling
azimuthal waves or shear waves around the annulus.

these measurements. The methods of the simultaneous spectral and flow-
visualization measurements and the velocity measurement are described below in
detail.

2.1. Simultaneous spectral and flow-visualization measurements

The experimental apparatus for the simultaneous spectral and flow-visualization
measurements is shown in figure 1. The values of the radii R, and R, of the inner and
outer spheres, the clearance ratio § and the critical Reynolds number Re are given
in table 1. The clearance ratio g is defined as (R,— R,)/R,, and the Reynolds number
Re as 2n f0 R3/v, where f0 is the rotation frequency of the inner sphere, and p the
kinematic viscosity of the fluid. The value of the critical Reynolds number, Re, =
880, was obtained by the flow-visualization measurement. The accuracies of the whip
of the rotating inner sphere and the concentricity of the inner and outer spheres were
assured to be within +0.015 mm and =40.01 mm, respectively. Water and
glycerol-water solution of 50 % concentration were used for working fluids. Flow
patterns were visible in the working fluids at room temperature using a suspension
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of small aluminium flakes that align with the flow. In order to clarify the flow state,
the whole spherical surface view and the meridian cross-section of the spherical
annulus were observed by front lighting and slit illumination, respectively.
Furthermore, in order to determine the evolutions of the spiral and wave patterns
such as the spiral TG vortices, the shear waves and the travelling azimuthal waves,
four mirrors were used as shown in figure 2 and the entire annulus was observed at
all times. This technique was employed in the circular Couette system by Gorman &
Swinney (1982).

The laser light (about 0.9 mm diameter) was illuminated in the flow normal to the
meridian cross-section of the spherical annulus, as seen in figure 1, and the intensity
of the laser light scattered by the aluminium flakes was detected by the photodiode
with a pinhole (0.7 mm diameter) located alongside the laser light. The photocurrent
was digitized and recorded in the computer. The power spectrum P, (f) was
computed from time series records, where fis the non-dimensional frequency defined
by f/ fo. The frequency of fluctuation f is expressed in units of the inner sphere
rotation frequency f,. The power spectrum of the scattered-light intensity can be
obtained at any colatitude ¢ by changing the locations of both the laser light and the
photodiode. The non-dimensional spectral resolution Af ( =Af/f, = @f/ND/f),
where fN and N, are the Nyquist frequency and the number of the above time-series
records, respectlvely, is about 0.005-0.01 for fN = (10-20) f0 and Ny = 2048 or
4096.

The fundamental frequency of the velocity fluctuation related to the spiral or wave
pattern such as the spiral TG vortices, the shear waves or the travelling azimuthal
waves was identified by both the observation of the spiral or wave pattern by eye
with a stopwatch or a stroboscope and the spectral analysis of the scattered-light
intensity.

2.2. Velocity measurement

The schematic of the top view of the experimental apparatus and the measuring
system for velocity measurement are illustrated in figure 3(a). The values of R,,
R, and g of this apparatus are given in table 1. The value of £ is almost the same as
that in figure 1 (both clearance ratios are about 0.14). The accuracies of the whip of
the rotating inner sphere and the concentricity of the inner and outer spheres for this
apparatus are of the same order as those in figure 1. The temperature of the working
fluid (air) was measured by a thermosensor (thermistor) located at the north pole (the
colatitude & = 0°). The rotation of the inner sphere was counted by a digital
tachometer, and the increase in the rotation was made so slowly that the transition
appeared quasi-statically. The increasing rate R* of a reduced Reynolds number
R* = Re/Re, was kept to less than 0.00091/s. The hot-wire probe and the I-type
prong used in the present experiment are shown in figure 3 (b, ¢). The support of the
hot-wire probe was flush with the spherical surface of the outer sphere, as seen in
figure 3(b). The prong was made as thin as possible, as seen in figure 3(c), in order
to avoid the influence of the wake behind it.

The output of the hot-wire anemometer (azimuthal velocity component v,) was
amplified, low-pass filtered and sampled by a data recorder or a microcomputer. The
mean azimuthal velocity 7, the power spectrum P(f), the autocorrelation coefficient
B(7*) and the turbulence intensity (r.m.s. value) 6, = (v¢)0 ® of the fluctuating
azimuthal velocity 7, were calculated from the output. The power spectrum of the
velocity fluctuation was calculated by F¥F'T, and the autocorrelation coefficient was
obtained by the inverse FFT of the spectrum. The non-dimensional spectral
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Ficure 3. Experimental apparatus and hot-wire anemometry for the velocity measurement.
{a) Schematic of experimental apparatus and measuring system. (b) Schematic of hot-wire probe.

(¢) Geometry of hot-wire prong.

resolution Af for the velocity fluctuation is 0.005-0.01, the same as for scattered-light
intensity. But occasionally the resolution is 0.0024 (¥, = 8192) for a high resolution

spectrum.

3. Outline of experimental results

3.1. Flow regimes

Seven flow regimes (IIT, IITSy, IHTWTS, IIITSy, IIIT, IVWTS, and IVT) are
successively obtained when the reduced Reynolds number R* is quasi-statically
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Flow
regime Characteristics R¥ Rf N 8,8y Joo fu m fw
IIT Laminar flow+ Rf=1 2 — — — —
toroidal TG
vortex +

secondary flow

ITTS, Laminar flow+ R}, = 1. 2 S,=3 f,,=1.315+0.009 — —
toroidal and R, =149 2 S8,=2 f,=0.85440.006 — —
spiral TG
vortices +

secondary flow

IITWTS, Laminar flow+ Ry, =171 2 S
wavy toroidal R} =193 2 §
and spiral TG R} =280 2 S,
vortices+
secondary flow

IIITS, Laminar flow+ R¥=505 2 S.=1 f,=0436+0.014 — —
toroidal and
spiral TG
vortices+
secondary flow

T Laminar flow + R} 2 — — — —
toroidal TG
vortex with
strong
circulation +
secondary flow

IVWTS, Turbulent flow R =105 2 S, =14 f,, =7.763+£0.063 m=1 fy,=04954+0.013
+ wavy =142 2 S, ~6 f;,=3.000+£0015 m=1 f,,=0478+0.019
toroidal
TG vortex +
secondary flow
with shear
waves

IVT Fully developed R¥ =19 2 — — — —
turbulent flow
+ toroidal TG
vortex +
secondary flow

fe, =085140.004 m=6 fy, =2.648+0.009
fis= 042740003 m=6 [f, =2.695+0.048
fi3=042640.004 m=5 f,=2.256+0.027

[}
_—— D

TABLE 2. Regime and state transitions, their transition Reynolds numbers, and the values of the
fundamental frequencies in each flow regime and flow state, when the Reynolds number is quasi-

statically increased to the largest Reynolds number (R*,. = 59) in the present experiment

increased over the critical Reynolds number (R = 1) to the largest Reynolds
number (R}, = 59) pursued in the present experiment. Their characteristics, flow
states (N, Sp, m and Sy), fundamental frequencies (fs, fw and fy) and transition
Reynolds numbers R} (i = 1a, 1b, 2a, 2b, 2¢, 3, 4, 5a, 5b and 6) are given in table 2.
The variables N, 8p, m and Sy are the cell number of toroidal TG vortex cells in both
hemispheres, the number of pairs of spiral TG vortices in each hemisphere, the
wavenumber of travelling azimuthal waves on the toroidal TG vortices, and the
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FieurE 4. Photographs of typical flows observed in some flow regimes taken by front lighting. (a)
IITS(N = 2, §, = 3) at R* = 1.18; laminar toroidal and spiral TG vortices. (b) IITWTS, (¥ = 2,
S, =1, m = 6) at B* = 2.15; wavy toroidal and spiral TG vortices. (¢) IVWTS, (N =2, m =1,
8§, = 14) at R* = 12.7; turbulent wavy toroidal TG vortices and secondary flow with orderly shear
waves. (d) IVWTS, (N =2, m =1, §; = 6) at R* = 15.9; turbulent wavy toroidal TG vortices and
secondary flow with irregular shear waves.

wavenumber of shear waves observed within the Ekman boundary layer near the
outer sphere in each hemisphere, respectively. Among the symbols of the flow
regimes, the symbol Sy means that the spiral TG vortices occur only in the northern
hemisphere (0° < @ < 90°). Although the spiral TG vortices occurred in both
hemispheres in Nakabayashi’s experiment (1983) for § = 0.138, they occur only in
the northern hemisphere in the present experiment for £ = 0.14 (II'TSy, IIIWTS,
and HITSy). The symbol S, means that the shear waves occur in both northern and
southern (90° < # < 180°) hemisphercs. There are two kinds of transition; regime
transition and state transition. The former corresponds to the evolution of flow
regime, the latter eorresponds to the change for the numbers of the travelling
azimuthal waves, the spiral TG vortices or the shear waves. R} (i = 1a, 2a, 3, 4, 5a
and 6) are those for the regime transition, while B¥ (: = 1b, 2b, 2¢ and 5b) for the
state transition, and their values are obtained by the simultaneous spectral and flow-
visualization measurements.

The photographs of typical flows observed in some flow regimes taken by front
lighting are shown in figure 4 (a—d). Figure 4 (a) shows the photograph in the flow
regime 1I1TSy. The schematic for the same regime given by Nakabayashi (1983) is
shown in figure 12 (a). A pair of toroidal TG vortices near the equator and three pairs
of spiral TG vortices in the northern hemisphere can be seen. The spiral TG vortices
extend towards the north pole, and disappear in the secondary flow. They rotate
about the axis of the inner sphere with a constant frequency. Figure 4 (6) shows the
photograph in the flow regime III WTS . The schematic for the same regime is shown
in figure 12(b). Six travelling azimuthal waves were observed on a pair of toroidal
vortices near the equator. A pair of wavy spiral TG vortices was also observed in the
northern hemisphere. Figure 4(c) shows the photograph in the flow regime
IVWTS, whose schematic is shown in figure 12(c¢). One travelling azimuthal wave
appeared on a pair of toroidal TG vortices. And fourteen orderly shear waves, which
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Ficure 5. Reynolds-number dependences of the mean azimuthal velocity components in the centre
of the clearance at the colatitudes # = 80° and 90° and the meridian coordinate & of the sources
(outflow-vortex boundaries) and/or sinks (inflow-vortex boundaries) of the toroidal cells observed
on the inner sphere in a meridian cross-section of spherical annulus. (a) Reynolds-number
dependences of the mean azimuthal velocity components in the centre of the clearance at O, ¢ =
80° and @, & = 90°. The heavy solid and broken lines show the theoretical dependences at § = 80°
and 90°, respectively, for the laminar basic flow calculated by Nakabayashi (1976) and
Nakabayashi et al. (1981). (b) Reynolds-number dependences of the meridian coordinate # of the
sources (outflow-vortex boundaries) and/or sinks (inflow-vortex boundaries) of the toroidal cells
observed on the inner sphere in a meridian cross-section of spherical annulus: Q, source; @, sink.
The error bar ¢ shows the amplitude of the oscillation. The data @ indicated by O show the value
of 6 at which the spiral TG vortices break.
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were observed within the secondary flow, ran in spiral fashion from the pole towards
the equator, more or less perpendicular to the direction of the secondary flow near
the outer sphere. They rotated about the axis of the inner sphere with a constant
frequency. The same shear waves were reported by Biihler & Zierep (1984). When R*
increases further, the shear waves become irregular and their wavelength irregularly
changes in space and time, as shown in figure 4(d), but their wavenumber is
estimated to be about 6.

3.2. Mean velocity distributions

Before the velocity fluctuation is considered, it is important to discuss the
relationship between the velocity profiles and the flow regimes. Figure 5 (a) shows the
Reynolds number dependences of the mean values 7, of the non-dimensional
azimuthal velocity components in the centre of the clearance,

vie = vi(n = 0.5) = vy(y = 0.5)/(2nR, f,),

at 6 = 80° and 90° (the equator). The variable 9(=(r—R,)/(R,— R,)) is the non-
dimensional wall distance from the inner sphere, where r is a radial coordinate.
Figure 5(b) shows the meridian coordinate ¢ (shown in figure 1) of the sources
(outflow-vortex boundaries) and/or sinks (inflow-vortex boundaries) of the toroidal
cells observed on the inner sphere in a meridian cross-section of spherical annulus.

Below Rg, the values of 7% at 6 = 80° and 90° in figure 5(a) agree well with the
theoretical ones for the laminar basic flow calculated by Nakabayashi (1976) and
Nakabayashi et al. (1981). In the range RBE < £B* < RY,, the value of 7, increases in
agreement with the theorctical one at @ = 80°, but decreases from that at 6 = 90°.
This decrease results from the fact that the fluid particle near the stationary outer
sphere, which has a small azimuthal velocity component, moves into the centre
region of the clearance, because above R§ two toroidal vortex cells appear, so that
a sink (inflow-vortex boundary) locates at & = 90°, as can be seen in figure 5(b). For
R}, S B* < R}, the value of 7} decreases at ¢ = 80° but increases at 0 = 90°,
because the toroidal vortex cells move towards the south pole with increasing R*, i.e.
a source leaves from @ = 80°, but approaches ¢ = 90°, as shown in figure 5(b). For
R}, € B* < R}, the values of 7 at § = 80° and 90° change gradually, according to
the locations of the source and sink. The value of v} is almost constant at 6 = 80°
and decreases at ¢ = 90° for Bf < R* < R}. For B} < E* < RE, it becomes large at
6 = 80° and small at 6 = 90°, because the spiral TG vortices disappear and the
toroidal vortex cells move towards the north pole, then the source and the sink locate
at @ = 80° and 0 = 90°, respectively, as shown in figure 5 (b). Beyond about R¥,, both
values of 7% at § = 80° and 90° approach about 0.5, because the chaos grows in the
flow. Thus the Reynolds number dependence of 7 can be clearly explained by the
inflow or outlow momentum transfer, depending on the location of the toroidal or
spiral TG vortex boundary, as described above.

Non-dimensional mean velocity profiles in the azimuthal component at 8 = 90° are
shown in figure 6. At R* = 0.941, the mean velocity 7} agrees well with the
theoretical one for the laminar basic flow calculated by Nakabayashi (1976) and
Nakabayashi et al. (1981), and its profile is slightly convex (upward) due to the
outflow of the secondary flow. But at R* = 1.05, the profile becomes concave
(upward) due to the inflow caused by the sink of TG vortex, as shown in figure 5(b).
At B* = 1.20 and 1.81, the mean velocity 7} increases only in the centre region of the
clearance with increasing R*. At R* = 5.09, however, it begins to decrease. The value
of 7§ at R* = 6.52 becomes smaller over the annulus gap because of the inflow
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Fieure 6. Distributions in the clearance of the mean azimuthal velocity component at the equator:
O, R*=0941; @, R*=1.05; O, B*=1.20; ©, R*=181; @, R*=5.09; & R*=6.52; ®,
B*=15.1; ©, B* =19.6; @, R* = 57.3. The heavy solid line shows the theoretical distribution at
R* = 0.941 for the laminar basic flow calculated by Nakabayashi (1976) and Nakabayashi et al.
(1981).

momentum transfer, as mentioned above. At B* = 15.1, the profile has a maximum
at 7 = 0.6 and the velocity gradient on the inner sphere becomes great. At B* = 19.6,
the profile flattens out in the central region of the gap. At R* = 57.3, the profile
approaches that of a turbulent Couette flow and the velocity gradients on the inner
and outer spheres become great.

3.3. Velocity fluctuations

The temporal dependence of the non-dimensional azimuthal velocity components in
the centre of the clearance, v}, at 6 = 80° and 90° is shown in figures 7 (@) and 7 (b},
respectively. The variable t* (={f,) is the non-dimensional value of time {. The values
of 1/fs;, 1/15, ete. are the fundamental periods of the various types of velocity
fluctuations described later. At 8 = 80° (figure 7a), a sinusoidal fluctuation is first
detected, as shown at B* = 1.18 and 1.66. As RB* is increased, a periodic fluctuation
(B* = 1.81) appears, and then some noise is added to this fluctuation (B* = 2.15 and
3.91). But the noisc almost disappears (B* = 5.63), and then the periodic fluctuations
all disappear (R* = 6.71). But with a further increase in B*, a periodic fluctuation
reappears with noise (B* = 12.7 and 15.9), and finally a fully developed turbulence
(R* = 56.3) appears. At § = 90° (figure 7b), the same types of fluctuation as those at
6 = 80° successively appear as R* is increased, but the waveshapes of the fluctuations
differ from those at § = 80°.

The power spectra of the velocity fluctuations at 6 = 80° are shown in figure 8. At
R* =1.18, the velocity fluctuation power spectrum P(f) contains a single sharp
frequency component labelled fg, and its harmonics, which were confirmed to be line
spectra within the accuracy of the measurement. The frequency component fg,
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corresponds to the spiral TG vortices with three pairs of vortex cells (S, = 3) passing
an observation point in the laboratory as described in §4.1. Another sharp frequency
component labelled f, (=1), which equals the rotation frequency of the inner sphere,
was caused by the whip of the rotating inner sphere. However, the intensity of f, is
negligibly small in comparison with that of f;,, so its effect cannot be suspected to
influence the transition phenomena.

At R* = 1.66, the spectrum contains a new single sharp frequency component
labelled fg,, which corresponds to the spiral TG vortices with two pairs of vortex cells
(Sp = 2). The relations between frequency components and kinds of vortices or waves
are digcussed in §4.1 in detail. At B* = 1.81, the spectrum contains the component
Js2» @ new sharp frequency component labelled fy,,, their harmonics and many
frequency components of their integer-linear combinations such as C, fiy, +C, fs,
resulting from the nonlinear interaction between them, where C, and C, are integers.
The frequency component f,, corresponds to six travelling azimuthal waves (m = 6)
passing the point of observation. For the case with plural fundamental frequency
components of velocity fluctuation (e.g. fw, and f5, at B* = 1.81), it is generally
impossible to identify the fundamental frequencies only by means of the spectral
analysis. In the present study, the fundamental frequencies are identified from the
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FiaurE 9. Power spectra of the velocity fluctuations in figure 7 (b). The symbols ©®, O, ¢, @M, ©, @,
A and B indicate the fundamental frequency components fg,, fia, fwi, fwer fws frrs frz and fio
(including their harmonics), respectively. The frequency components of f, and its harmonics,
indicated by @, are the instrumental artifacts. (¢) R* = 1.18. (b)) R* = 1.66. (¢) R* = 1.82. (d)
R* =217 (e) R* = 3.90. (f) R* = 5.63. (9) B* = 6.19. (h) R* = 14.1. () R* = 15.9. (j} R* = 28.0.

comparison of velocity power spectra with both the visualization and the
simultaneous laser measurements, as described in §4.1.

At R* =215, a new sharp frequency component labelled fg, replaces the
component f,, and the background continuum level increases to about 107° m?/s.
The component fg, corresponds to the spiral TG vortices with a pair of vortex cells
(Sp=1). At R* =391, a new sharp frequency component labelled fy,, which
corresponds to five travelling azimuthal waves (m = 5), replaces the component fy,.
At R* = 5.63, where the component f,, disappears, the spectrum contains only the
component fy, and its harmonics. The disappearance of fy, corresponds to the
disappearance of the travelling azimuthal waves in the flow visualization. In the
range 6.10 < R* < 10.5, since no velocity fluctuation appears as previously
described, the power spectrum becomes zero. At R* = 12.7, new broadband
frequency components labelled fy, and fi;, appear in the spectrum. They correspond
to a travelling azimuthal wave (m = 1) and fourteen shear waves (Sy = 14),
respectively. At R* = 15.9, a new broadband frequency component labelled fy,,
which corresponds to around six shear waves (Sy =~ 6), appears in the spectrum.
With an increase of B*, the intensities of the components at fy, and fy, decrease,
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while the background continuum level increases, and consequently the continucus
spectrum is presented, as shown at B* = 56.3.

The power spectra of the velocity fluctuations at § = 90° are shown in figure 9. The
spectral evolution at # = 90° is almost the same as that at § = 80°. But the sharp
frequency components labelled f, and fy, appear in the spectra for R* = 1.18 and
6.19, respectively, which are undetected for the same R* at € = 80°. This will be
discussed in §4.2.

The autocorrelation coefficients R(7*) of velocity fluctuations are shown in figure
10(a—h). The abscissa 7* in the same figure is a non-dimensional time lag which is
stated in units of 1/f,. The AR(f) is defined as 1— E(1/f) and describes the degree of
randomness of the velocity fluctuation, as mentioned in §5. 1/f5,, 1/fs,. 1/fs; and
1/fws are the delay times at which stronger autocorrelations appear (see figure 10).
Figures 10 (a) and 10 (b) show almost cosine-type autocorrelations with the periods of
1/fs; and 1/f;,, respectively, which indicates that the velocity fluctuations are almost
sinusoidal. Figures 10(c)-10(e) show a strong autocorrelation with the period of
1/fss or 1/fs, and a weak one with the period of 1/fy, or 1/fyu,. Thus, the
autocorrelation related to the spiral TG vortices is stronger than that related to the
travelling azimuthal waves, so AR(f) = AR(fs). Figure 10(f) indicates the strong
periodic autocorrelation with the period of 1/f,. Figure 10(g) shows the strong
periodic autocorrelation with the period of 1/f,, and the slightly weaker one with the
period of 1/fy,. Accordingly, the autocorrelation related to the travelling azimuthal
waves is usually stronger than that related to the shear waves, so AR(f) = AR(fy;)-
Figure 10(h) shows the autocorrelation of a turbulent flow.

4. Fundamental frequencies
4.1. Identification of fundamental frequencies

The power spectra P (f) of the scattered laser-light intensity at ¢ = 80° and = 0.5
are shown in figure 11 (a—f). The frequency component labelled f, as well as that in
the velocity fluctuation power spectra was caused by the whip of the rotating inner
sphere, as previously described. From the flow visualizations and the simultaneous
spectral measurements by the scattered laser-light, the sharp frequency component
Jfs1 in figure 11 (a) was found to correspond to the spiral TG vortices with three pairs
of vortex cells (Sp = 3, figure 4 a) passing the observation point in the laboratory. In
addition to this visual and spectral identification, the agreement of the value of fg,
in figure 11 (a) with that in figure 8(a) (the velocity fluctuation power spectrum)
shows definitely that f5, is the fundamental frequency component of the spiral TG
vortices of S = 3.

From a similar consideration, the sharp frequency components fg, and fg, in figures
8 and 11 are identified as the fundamental frequency components of the spiral TG
vortices of §p = 2 and 1, respectively. By the same flow visualization technique, the
simultaneous spectral measurements and the agreement of frequency components of
fw1 between figures 11 (c) and 8(d), fy; was found to be the fundamental frequency
component of six travelling azimuthal waves (m = 6) passing the observation
point.

Similarly, it is concluded that the frequency components fy, and fy, in figures 8
and 11 are the fundamental frequency components of the travelling azimuthal waves
of m = 5 and 1, respectively. And it is also concluded that the frequency components
fu1 and fy, in figures 8 and 11 are the fundamental frequency components of fourteen
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shear waves (Sy = 14, figure 4¢) and about six shear waves (Sy ~ 6, figure 4d)
passing the observation point, respectively.

The frequency components f,, fs, fwi> fwe> fws fur and fy, at € = 90° in figure 9
were also found to be the same fundamental frequency components as those at
0 = 80° from the same consideration as described above.

The types of the fundamental frequencies found in the present experiment are
summarized as follows. The three kinds of fundamental frequencies, f, fw and fy,
correspond to the spiral TG vortices, the travelling azimuthal waves on the toroidal
TG vortices and the shear waves within the secondary flow, respectively. The
schematics of the flows in typieal flow regimes and these fundamental frequencies are
shown in figure 12.

4.2. Spatial characteristics and evolution of fundamental frequency components

The relationship between the fundamental frequency components expressed by their
wavenumbers and the colatitude is shown in figure 13. The fundamental frequency
components could be detected not only over the §-ranges shown by solid lines, where
the corresponding disturbances such as the spiral TG vortices, the travelling
azimuthal waves and the shear waves were clearly observed (figure 55b), but also over
the 0-ranges indicated by broken lines, where they were not clearly observed. The
values of the fundamental frequency components are constant independently of 6.
The power spectra of the velocity fluctuations measured by the hot-wire anemometer
at » = 0.1, 0.5 and 0.9 are shown in figure 14 (a—c), respectively. Although the peak
values of power at fy,, and fy, depend on 7, the values of fy,, and fi, are independent
of 5. Thus, it is known that the values of fundamental frequency components are
independent of both & and #.

The relationship between the fundamental frequency components and RB* is shown
in figure 15, compared with that in the circular Couette flow. An indication O shows
the values of the fundamental frequency obtained by the spectral analysis of the
scattered light intensity, while x, + and @ indicate those obtained from the
velocity fluctuation spectra. The x indieation shows the data in which there is
complete agreement between the frequency values at 8 = 80° and 90°. The symbols
+ (fs;) at 0 = 80° and @ (f;, and fy,) at 0 = 90° show discrepancy. On the other
hand, the data (Q) obtained by the scattered light intensity agree well with those
obtained by the velocity fluctuation except for f;, (®) for R* ~ 1.2 and fy, for
R*~6.2. ;

In order to investigate the discrepancy which can be seen in f;, for B* =~ 1.2 and
in fy, for R* ~ 6.2, the following additional experiments were pursued by means of
the simultaneous spectral and flow-visualization measurements. First of all, the
Reynolds number was increased from zero to B* = 1.18 with some acceleration, but
not quasi-statically. The flow regime of IITS(N = 2, 8; = 2) and the fundamental
frequency component fg, were obtained, but not f;;, as shown in figure 16 (a). Next,

Fi6URE 11. Power spectra of the scattered laser-light intensity in the centre of the clearance at the
colatitude 8 = 80°. The symbols ¥V, O, O, <, 0l, ©. @ and A indicate the fundamental frequency
components fs, fa foar fwir fwes Swss fm and fy, (including their harmonics), respectively. The
components of f, and its harmonics, indicated by @, are the instrumental artifacts. (a)f;, in
IITS, (N =2, S, = 3) at R* = 1.18. (b) f, in IITS, (N = 2, 8, = 2) at R* = 1.66. (¢) fy, and f, in
IITWTS, (N =2,8, =1, m =6) at R* = 2.15. (d) f; and fy,, in IITWTS, (N =2, 8, = 1, m = 5)
at R* =3.91. () fy; and fi, in IVWTS, (N =2, m = 1, S, = 14) at B* = 12.7. (f) fy; and f, in
IVWTS, (N=2,m=1,8, = 6)at R*=15.9.
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Freure 13. Relationship between the fundamental frequency components expressed by their
wavenumbers and the colatitude, obtained by the power spectra of the scattered laser-light
intensity in the centre of the clearance. The solid lines conjoining solid circles (experimental result)
indicate the meridian ranges, where the corresponding disturbances such as the spiral TG vortices,
the travelling azimuthal waves and the shear waves were clearly observed. The broken lines
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clearly observed.
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Ticure 14. Power spectra of the velocity fluctuations measured by the hot-wire anemometer at
7= 0.1, 0.5 and 0.9 at the equator for the flow of the regime IVWTS, (N =2, m =1, §, = 6) at
R*=156.1. (¢) p = 0.1. (b) n = 0.5. (¢) 3 = 0.9.

the R* was similarly increased from zero to B* = 6.19, then the flow regime
HIIWT(N =2, m =4) and fy(m = 4) (=fy,) were obtained, as shown in figure 16 ().
From these results we understand that the discrepancy at B* =~ 1.2 comes from the
difference of flow states between Sp = 2 and 8, = 3, which was caused by the fact
that the wake behind the hot-wire prong located at 8 = 90° is not so negligibly small
as that at 6 = 80° for B* = 1.2. The discrepancy at R* x 6.2 also comes from the
similar difference of low regimes between IITWT and ILI'T. However, no discrepancy
can be seen over the other range of R*. Hence, the data of hot-wire measurements
are assured as well as those of simultancous spectral and flow-visualization
measurcments without the wake, except for those of hot-wire measurement at
f = 90° for R* ~ 1.2 and 6.2.

The fundamental frequencies fs, fy and fy which are confirmed as mentioned
above, are summarized in table 2. The flow regimes of 11'TS and IIITSy are singly
periodic regimes characterized by a single-frequency component ( fg), while the flow
regimes of IIITWTSy and 1V WTS, are doubly periodic regimes characterized by two
fundamental frequeney components [ f, fw! and [ fy. ful. respectively. In the ranges
R* < R* < R* and R} < R* < R}, no fundamental frequency eomponents could
be detected, i.e. in the former range the velocity fluctuation disappearcd (the
relaminarizing flow occurs), whereas in the latter range it became chaotic.

On the other hand, Biihler & Zierep (1984) obtained two fundamental frequency
components v, and v, in the TG vortex flow with two toroidal cells for g = 0.177, as
shown in figure 15. v, is the fundamental frequency component of the shear waves

5 FLM 194
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Ficure 15. Reynolds-number dependences of the fundamental frequency components of the
velocity fluctuations: Q. present data obtained from the power spectra of the scattered light
intensity; x, present data obtained from the velocity fluctuation power spectra both at the
colatitudes @ = 80° and 90°; +, present data obtained from the velocity fluctuation power spectra
at 0 = 80°; @ present data obtained from the velocity fluctuation power spectra at 6 = 90°.
—--—, »; and v,, data for f = 0.177 obtained by Biihler & Zierep (1984); - - -, w. wyy and w,.
data, and R* =12, R%,=101, R, =12, R¥, =193, R% =219, transition Reynolds

eyl =
numbers for the regime transition, respectwel\ obtdmed in the (lI‘( ular Couette flow for f=0.14
and I' = 20.0 by Fenstermacher ¢f al. (1979).

within the secondary flow, although their wavenumber has not been reported. The
value of v, is much smaller than that of fy,. The physical characteristic of v, is not
described in detail. Although v, is considered a fundamental frequency of a secondary
instability established within the Taylor vortices in their paper, the value of v, is
very different from the present fy,, being rather near the value of fy,.

The Reynolds number dependences of the rotation frequencies of the spiral TG
vortices, the travelling azimuthal waves and the shear waves, fs/Sp, fw/m and
Sfu/Su, are shown in figure 17. The values of f/Sy, fw/m and fy/Sy are nearly
constant as the Reynolds number is increased, and differ slightly from onc
another.

As for the rotation frequency f/m in the spherical Couette flow, the clearance
ratio dependence of fy, /m is shown in figure 18. The range of uncertainty means the
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Ficurr 16. Scattered light intensity spectra in the centre of the clearance at the equator under the
condition that the Reynolds number was increased with some acceleration rate. (a) fg, in IITSy
(N =2, 8, =2)at B* = 1.18. The O indicates the fundamental frequency component f, and its
harmonics. The frequency component f; indicated by @ is an instrumental artifact. (b) fy, (m = 4)
in IITWT (N =2, m =4) at R*=6.19. B indicates the fundamental frequency component
fw (m =4) and its harmonics.

range between the maximum and minimum values in the relationship between
fw/m and R* as shown in figure 17. The Taylor instability occurs in the present
data for £ = 0.14, but not in those of Yavorskaya et al. (1980) for g = 0.398-1.33, as
described previously. The present data, however, seem to be on the extrapolated
curve of those of Yavorskaya et al.

4.3. Comparison with circular Couette flow

Toroidal TG vortices near the equator in the spheriecal Couette system are similar to
Taylor vortices in the circular Couette system, but the former is influenced by the
Ekman boundary layer. Therefore, it is interesting in the consideration of the Ekman
boundary-layer effect on the toroidal TG vortices to discuss the fundamental
frequencies and the transition Reynolds numbers, comparing both the spherical and
circular Couette systems.

In figure 15, R, —R% , arc the transition Reynolds numbers for regime transition,
and wy, wyyw and wy are the characteristic frequency components which were
obtained in the circular Couette flow for the aspect ratio I'= 20.0 and g = 0.14 by
Fenstermacher et al. (1979). wy, and wy are the fundamental frequency component of
the travelling azimuthal waves and the broad component of a weak turbulence,
respectively. Gorman & Swinney (1982) found that wy is the frequency component
of the modulated travelling azimuthal waves. Since the value of transition Reynolds
number for the onset of the travelling azimuthal waves in the spherical Couette flow
(Bf, = 1.71) is greater than in the circular Couctte flow (R¥,; = 1.2), the Ekman

boundary-layer effect in the spherical Couette flow acts on the stable side for the

5-2
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max

et al. 1984); —----- L p=0.144, [ =279, m = 3-7 (Coles 1965).

onset of the travelling azimuthal waves. As the Reynolds number is increased from
R* x 3, the wavenumber changes to m = 5, m = 0 (travelling wave disappears) and
m = 1 by turns in the spherical Couette flow. But in circular Couette flow, five waves,
four waves, four waves with the modulation and four waves appear by turns. The
temporary disappearance of the travelling waves and no modulation are charac-
teristic of the travelling azimuthal waves in the spherical Couette flow.

The rotation frequencies oy, /m of the travelling azimuthal waves, as shown in
figure 17, are for relatively large aspect ratios and approximately the same clearance
ratios as the present one (f = 0.14) in the circular Couette flow. Although the values
of wy /m decrease monotonically with increasing R* until they reach their plateaux,
the rotation frequency fy,/m in the spherical Couette flow does not decrease and are
much greater than wy/m for the higher range in RB*.

On the other hand, the ranges of maximum and minimum values of wy,/m over the
all B* range in the circular Couette flow of I, = 26-115 and 8 = 0.0526-0.588,
obtained by King et al. (1984), are shown in figure 18. The rotation frequency in the
spherical Couette flow (fy/m) shows the same tendency as wyw/m in the circular
Couette flow, but the former is greater than the latter throughout the range of g.
King et al. (1984) demonstrated that wy,/m has the tendency of monotonic increase
as a decrease of aspect ratio I'. From the above-mentioned relation between wy, /m
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Fraure 18. Clearance-ratio dependence of the rotation frequency of the travelling azimuthal
waves. The range of uncertainty means the range between the maximum and minimum values in
the relationship between f,,/m and B* or between wy/m and B*: & (maximum) and @ (minimum),
present data for f=0.14; O (maximum) and B (minimum), data for f=0.398-1.33 of
Yavorskaya ef al. (1980) in the spherical Couette flow; O (maximum and @ (minimum). data for
B =0.0526-0.588 and I, = 26-115 of King et al. (1984) in the circular Couette flow.

max

and I, the end effect of the cylinders is known to increase wy/m in the circular
Couette flow. Since the end effect in the circular Couette flow corresponds to the
Ekman boundary-layer effect in the spherical Couettc flow, the Ekman boundary-
layer effect is presumed to increase fy,/m in the spherical Couette flow.
Remarkable characteristies of the spherical Couette flow are described as follows.
As mentioned previously, neither the modulation of the travelling azimuthal waves
such as wyw nor the weak turbulence such as wg could be detected in the present
spherical Couette flow measurements, where thc Reynolds number was quasi-
statically increased from zero. However, under the condition that the Reynolds
number is increased with a given acceleration, the modulation of the travelling
azimuthal waves appears as will be reported in our next paper. And the fundamental
frequencies fy and f;; are characteristic only of the spherical Couette flow.

5. Development of turbulence

Sinee a velocity fluctuation autocorrelation coefficient approaches an uncorrelated
one as the chaotic element increases in a flow, Yavorskaya ef al. (1980) defined the
decay of the velocity fluctuation autocorrelation coefficient, AR(f) = 1—R(1/f), as
the quantitative value deseribing the degree of randomness of the velocity fluctuation
in the spherical Couette flow. On the other hand, Sato & Saito (1975) defined a
randomness factor z, the ratio of the energy contained in a background continuous
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FicurE 19. Growth in the degree of randomness in the velocity fluctuation, defined by the decay
of the autocorrelation coefficient AR(f) and the randomness factor z, in the centre of the clearance
at the colatitudes 6 = 80° and 90°. The symbols ©, @, O, @ and © indicate the decay of the
autocorrelation coefficient AR(fy), AR(fy), AR(fs;), AR(fy) and AR(fy,) at 6 =80° The
symbols ¢, O, € and & indicate the decay of the autocorrelation coefficient AR(fy,), AR(f,),
AR(fyo/3) and AR(fy,) at & = 90°. The symbol @ indicates z at 90°.

spectrum ([total fluctuation energy]—[regular fluctuation energy contained in linc
and broadband spectral]) to the total fluctuation energy, for a two-dimensional
wake. We also adopted the same definitions, AR(f) and 2, as the valucs describing the
degree of randomness of the velocity fluctuation.

The growth of the value of AR and z in the centre of the gap are shown at 6 = 80°
and 90° in figure 19. Below R¥, the curve of AR(6 = 90°) shows a Reynolds-number
dependence similar to that of AR(6 = 80°) or z(6 = 90°), but the former is greater
than the latter. And the value of z is smaller than that of AR. The valucs of AR(8 =
80° and 90°) and z(f = 90°) become zero in the range R} < R* < R¥, where the
velocity fluctuation disappears and the flow returns to the time-independent toroidal
TG vortex flow (the flow regime IIIT, table 2). Beyond R¥, z(8 = 90°) increases in
the same way as AR(J = 90°) with increasing R*. However, AR(6 = 80°) first
increascs earlier than AR(f = 90°). decreases in 12 < R* < 15 and then increases
later than AR(6 = 90°) with increasing R*. Beyond R¥, the chaos of the flow can be
guessed to grow much more for § = 90° than for ¢ = 80°.

The non-dimensional turbulence intensities (r.m.s. values 7 = 0,/ (2rR, f:,)) of
the fluctuating azimuthal velocity component are shown in figure 20. Figure 20(a)
gives the Reynolds number dependences of the turbulence intensities at 9 = 0.5,
33c = 65(n = 0.5), for 6 = 80° and 90°. In the range RE < R* < R}, the turbulence
intensity at 6 = 80° is greater than that at 6 = 90°, and the Reynolds number at
which the turbulence intensity becomes maximum for 6 = 80° is different from that
for 6 = 90°. These Reynolds numbers for § = 80° and 90° are not in agreement with
the Reynolds number at which AR or z has the maximum value (cf. figures 19 and
20a). Accordingly, it is argued that the root-mean square value of the velocity
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Freurk 20. Relationship between the turbulence intensity of the fluctuating azimuthal velocity
component and the Reynolds number. (a) Turbulence intensity in the centre of the clearance at
colatitudes 6 = 80° and 90°: O, 6 = 80°; @, ¢ = 90°. (b) Distribution in the clearance of the
turbulence intensity at the equator: (O, R* =1.19; @, B* = 15.1; ©, B* = 19.6.

fluctuation corresponds directly with the degree of randomness of the flow, but
rather that the energy of velocity fluctuation contains the greater part of energy as
the regular periodic motion in the lower R* value range.

In the range R < R* < RY,, 7%, as well as AR and z becomes zero, because the
relaminarization seems to occur, as described previously. Above R¥, since the
travelling azimuthal waves and the shear waves appear, both turbulence intensities
P for 6 = 80° and 90° increase. But, beyond about R, they tend to decrease slightly
with an increase of R*. Figure 20(b) shows the distributions of the turbulence
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intensity 7% in the gap at & = 90°. The profile of 7} at £* = 1.19, where the spiral TG
vortices appear, is almost symmetric with respect to = 0.5. But the profile at
R* =15.1 is asymmetric with respect to 5 = 0.5. Since fy,; and fyy, are obtained for
¢ = 90° around R* = 1419, the reason why #f becomes greater near the outer sphere
would be that the shear waves influence the velocity fluctuation closer to the outer
sphere than to the inner sphere, and that the ehaos grows near the outer sphere. The
profile at B* = 19.6 approaches a symmetric profile with respect to 4 = 0.5, because
the chaotie clement increases in the flow with R*.

6. Conclusions

We have considered the characteristics of the laminar—turbulent transition of the
Taylor-Gortler (TG) vortex flow in the spherical Couctte system. With increasing
Reynolds number, the mean velocity profile in the gap is influenced by the location
of both sink and source on the inner sphere, because of the momentum transfer
depending on the inflow and outflow boundarics of the stationary vortices which can
move with the Reynolds number. On the other hand, the fluctuating velocity
corresponds to the periodic or unperiodic motions of vortices.

By velocity and simultaneous spectral and flow-visualization measurements, threc
kinds of fundamental frequencies, fg, fw and fy, were found, which correspond to the
spiral TG vortices, the travelling azimuthal waves on toroidal TG vortices and the
shear waves within the Kkman boundary layer, respectively. The interaction
between fundamental frequencies, e.g. wave interaction between the travelling
waves and shear waves, cannot be observed by flow visualization, but can be
detected by the scattered-light measurements and velocity measurements over a
wider range of the meridian angle. Each fundamental frequency has a value
completely independent of the meridian angle and wall distance from the inner
sphere. Although each fundamental frequency has a discrete value depending on the
wavenumber which varies with the Reynolds number, each rotation frequency (i.c.
fundamental frequency scaled by the wavenumber) has a value almost independent
of the Reynolds number. The rotation frequencies differ in terms of the spiral TG
vortices, the travelling azimuthal waves and the shear waves. The spiral TG vortices
and the shear waves are characteristic of the spherical Couette flow, although the
travelling azimuthal wave is a common type of disturbance appearing in both the
spherical and circular Couette flows. The components of the modulated waves (wyw)
and the weak turbulence {w,) appearing in the circular Couette flow could not be
detected in the present experiment. In spherical Couette flow, the preturbulent flow
is also characterized by not more than two fundamental frequency components.

Another characteristic of the present transition is the oceurrence of relaminarizing
flow in R¥ < B* < R¥, where the non-dimensional r.m.s. value of fluctuating
velocity is almost zero, with inercasing Reynolds number, after its first increase and
the following decrease. The non-dimensional r.m.s. values of fluctuating velocity, the
decay of the autocorrelation coefficient and the randomness factor also increase with
the appearance of shear waves. However, the non-dimensional r.m.s. values of
fluctuating velqeity then gradually decrease with the development of the chaos in the
flow.



Spectral study of the laminar- turbulent transition in spherical Couette flow 131

REFERENCES

Barrews, F. 1982 Taylor vortices between two concentric rotating spheres. J. Fluid Mech. 119,
L.

Bervarv, Yu. N., Monaknov, A. A., SCHERBAKOV, S. A. & Yavorskava, [. M. 1979 Onset of
turbulence in rotating fluids. J. Exp. Theor. Phys. Lett. 29, 329.

BELYAEY, Yu. N, MoNAKHOV, A. A, SCHERBAKOV, S. A. & Yavorskava, I. M. 1984 Some routes
to turbulence in spherical Couette flow. In Laminar-Turbulent Transition (ed. V. V. Kozlov),
p. 669. Springer.

BouaspaLLan, A. & CoaNET, G. (980 Laminar-turbulent transition in Taylor—Couette flow. Tn
Laminar-Turbulent Transition (ed. R. Eppler & H. Fasel), p. 368. Springer.

Biruner, K. & Zierep, J. 1983 Transition to turbulence in a spherical gap. Proc. 4th Intl Symp.
on Turbulent Shear Flows. University of Karlsruhe.

BUHLER, K. & Z1EREP, J. 1984 New secondary flow instabilitics for high Re-number flow between
two rotating spheres. In Laminar-Turbulent Transition (ed. V. V. Kozlov), p. 677. Springer.

Covrgs, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385.

Dennts, 8. C. R. & QuarTareLLE, L. 1984 Finite difference solution to the flow between two
rotating spheres. Comp. Fluids 12, 77.

FensTErMacner, P. R., Swinxey, H. L. & Gowrus, J. P. 1979 Dynamical instabilities and the
transition to chaotic Taylor vortex flow. .J. Fluid Mech. 94, 103.

GormMaN, M. & Swinney, H. L. 1982 Spatial and temporal characteristics of modulated waves in
the circular Couette system. J. Fluid Mech. 117, 123.

King, G. P, L1, Y., Ler, W. & Swinney, H. L. 1984 Wave speeds in wavy Taylor-vortex flow.
J. Fluid Mech. 141, 365.

Krausg, E. 1980 Taylor-Gdrtler vortices in spherical gaps. Comp. Fluid Dyn. 2, 81.

Muwnsown, B. R. & MencuTurk, M. 1975 Viscous incompressible flow between concentric rotating
spheres. Part 3. Linear stability and experiments. J. Fluid Mech. 69, 705.

Narapavasil, K. 1976 Study on the flow between rotating spheres, 1st report, Theoretical study.
Trans. Japan Soc. Mech. Engrs (in Japanese) 42, 1839.

Nakapavasni, K. 1978 Frictional moment of flow between two concentric spheres, one of which
rotates. Trans. ASME 1:.J. Fluids Engng 100, 281.

r

NakaBavasai, K. 1983 Transition of Taylor-Gortler vortex flow in spherical Couette flow.
J. Fluid Mech. 132, 209.

NakaBavasui, K., Nistipa, H. & Onrsut, S. 1981 Numerical studies of the flow between two
concentric rotating spheres in the great range of Reynolds numbers. Bull. Japan Soc. Mech.
Engrs 24, 1787.

NeEwnousg, S., RueLLE, D. & Takens, F. 1978 Occurrence of strange Axion A attracters near
quasi-periodic flows on 7™, m > 3. Commun. Math. Phys. 64, 35.

Saro, H. & Sarro, H. 1975 Fine-structure of energy spectra of velocity fluctuations in the
transition region of a two dimensional wake. J. Fluid Mech. 67, 539.

Sawarzki, O. & Zigrep, J. 1970 Das Stromfeld im Spalt zwischen zwei konzentrischen
Kugelflichen, von denen die innere rotiert. Acta Mechanica 9, 13.

ScHRAUF G. 1986 The first instability in spherical Taylor-Couette flow. J. Fluid Mech. 166,
287.

ScurAUF, G. & Kravusg, E. 1984 Symmetric and asymmetric Taylor vortices in a spherical gap.
In Laminar—Turbulent Transition (ed. V. V. Kozlov), p. 659. Springer.

TowxnsEND, A. A. 1984 Axisymmetric Couette flow at large Taylor numbers. J. Fluid Mech. 144,
329.

TuckerMAN, L. S. 1983 Formation of Taylor vortices in spherical Couette flow. PhD thesis,
Massachusetts Institute of Technology.

WakEeD, A. M. & Munson, B. R. 1978 Laminar—turbulent flow in spherical annulus. Trans. ASME
I:J. Fluids Engng 100, 281.

WaLpeN, R. W. & DonneLry, R.J. 1979 Re-emergent order of chaotic circular Couette flow.
Phys. Rev. Lett. 42, 301.



132 K. Nakabayashi and Y. Tsuchida

Wimmer, M. 1976 Experiments on a viscous fluid flow between concentric rotating spheres.
J. Fluid Mech. 78, 317.

Yanata, H. 1978 Temporal development of the Taylor vortices in a rotating fluid. Prog. Theor.
Phys. Suppl. 64, 165.

Yanata. H. 1979 Temporal development of the Taylor vortices in a rotating fluid. IT. Prog. Theor.
Phys. 61. 791.

Yauara, H. 1980 Temporal development of the Taylor vortices in a rotating fluid. TIT. Prog.
Theor. Phys. 64, 782.

Yavorskava, I. M., Bruyagv, Yu. N., Movakuov, A. A, Astar’Eva. N. M., SCHERBAKOV, S, A.
& VvEDENSKAYA, N. D. 1980 Stability, nonuniqueness and transition to turbulence in the
flow between two rotating spheres. Rep. no. 595. Space Research Institute of the Academy of
Science, USSR.



